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Abstract: We present a general and systematic treatment of multi-trace deformations in

the AdS/CFT correspondence in the large N limit, pointing out and clarifying subtleties

relating to the formulation of the boundary value problem on a conformal boundary. We

then apply this method to study multi-trace deformations in the presence of a scalar VEV,

which requires the coupling to gravity to be taken into account. We show that supergravity

solutions subject to ‘mixed’ boundary conditions are in one-to-one correspondence with

critical points of the holographic effective action of the dual theory in the presence of a

multi-trace deformation, and we find a number of new exact analytic solutions involving

a minimally or conformally coupled scalar field satisfying ‘mixed’ boundary conditions.

These include the generalization to any dimension of the instanton solution recently found

in hep-th/0611315. Finally, we provide a systematic method for computing the holographic

effective action in the presence of a multi-trace deformation in a derivative expansion away

from the conformal vacuum using Hamilton-Jacobi theory. Requiring that this effective

action exists and is bounded from below reproduces recent results on the stability of the

AdS vacuum in the presence of ‘mixed’ boundary conditions.
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1. Introduction and summary of results

Multi-trace deformations have been studied extensively in the context of the AdS/CFT

correspondence in the large N limit, both classically [1 – 7] and at the one-loop level [8 –

10]. Most of this work, however, has focused on the effect of multi-trace deformations on the

conformal vacuum, in which case the back-reaction to the geometry can be ignored. If the

deforming operator though is allowed to acquire a non-zero VEV, then the back-reaction

can no longer be ignored and the coupling to gravity must be taken into account. Only
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recently have multi-trace deformations in the presence of a scalar VEV been considered,

mainly in the context of Designer Gravity [11 – 21].

In order for a CFT to admit multi-trace deformations it must contain operators with

low enough dimension. For double- or higher-trace deformations built out of a single opera-

tor, for example, not to be irrelevant, the operator must have conformal dimension ∆ ≤ d/2

in d dimensions. For scalar operators, for example, this means that the operator must have

the ‘non-standard’ ∆− dimension. This constraint, together with unitarity, which imposes

a lower bound on the dimension ∆, severely restricts the CFTs admitting multi-trace de-

formations. The possibilities are further narrowed if one insists that the undeformed CFT

be supersymmetric. Since the AdS/CFT dictionary relates multi-trace deformations in the

large N limit to a choice of boundary conditions for the dual bulk supergravity fields [1],

these restrictions on the conformal dimension of the operator translate into a condition

on the mass of the dual supergravity fields for them to admit the necessary generalized

boundary conditions. We are then interested in gauged supergravities that admit AdS

vacua and have fields with mass close to the Breitenlohner-Freedman bound [22].

Both the maximal gauged supergravities in four and five dimensions contain scalars

with the right mass, and indeed black hole solutions with scalar hair that satisfy gener-

alized boundary conditions were found numerically in [12], following earlier work in three

dimensions [11]. Smooth instantons and gravitational soliton solutions of N = 8 D = 4

gauged supergravity with generalized boundary conditions were also found numerically

in [13], and shown to be related to a Big Crunch geometry. More recently, exact solutions

of N = 8 D = 4 gauged supergravity obeying generalized boundary conditions were found

analytically in [23] and [24] and uplifted to eleven dimensions. The AdS/CFT identifies

these solutions with ‘vacua’ or ‘states’ in the dual deformed CFT. In particular, the ex-

trema of the large N quantum effective action for the VEV of the deforming operator are in

one-to-one correspondence with bulk solutions satisfying the relevant boundary conditions.

These bulk solutions then provide a window into the vacuum structure of the deformed

theory.

A very interesting question, in particular, is whether the conformal vacuum - which

generically remains a vacuum of the deformed theory - is stable or not under certain

boundary conditions. The instantons found in [12] and [24] show that it is not, under

the particular AdS-invariant boundary conditions that these instantons satisfy, since these

mediate the tunneling of the conformal vacuum to an instability region. This, of course,

does not contradict any of the well known stability theorems [25 – 27], because these apply

only to certain special boundary conditions. The question of stability with more general

boundary conditions corresponding to multi-trace deformations has been addressed recently

in the context of Designer Gravity [18 – 21]. The approach followed is a generalization of the

spinorial argument of [28], but as in the earlier work [26, 27] no supersymmetry is required.

The argument only relies on the existence ‘fake Killing spinors’, which themselves can be

constructed from a ‘fake superpotential’. Non-perturbative stability then follows from the

existence of a suitable ‘fake superpotential’.

However, the AdS/CFT correspondence allows us to address the problem of non-

perturbative stability from a completely different point of view. Namely, if we knew the
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effective action of the dual theory, then we would be able to address the question of stabil-

ity/instability directly. We will show that the effective action can be computed holograph-

ically in a derivative expansion using Hamilton-Jacobi theory [29]. Requiring that this

effective action exists and it is stable reproduces all known stability results, including the

recent results in the case of generalized boundary conditions. This agreement can be traced

to the fact that both arguments require global existence of a suitable ‘fake superpotential’.

In the latter case, however, this is interpreted as Hamilton’s characteristic function, which

allows us to immediately generalize these results to other systems, such as conformally

coupled scalars.

The paper then is organized as follows. In section 2 we review a general description of

multi-trace deformations in the large N limit, which relies on large N factorization. This

will make manifest the correspondence between multi-trace deformations on the boundary

and boundary conditions in the bulk in section 3, where we revisit the boundary value

problem and the possible boundary conditions for the Klein-Gordon operator in asymp-

totically locally AdS spaces. In particular, we present a general systematic method to

address multi-trace deformations and to properly account for the fact that the boundary

is a conformal boundary - as opposed to a hard boundary. As we show, this automati-

cally removes the divergences associated with the infinite volume of the space. Although

we present these results for scalar fields, they immediately generalize to any field admit-

ting boundary conditions corresponding to multi-trace deformations. In section 4 then we

demonstrate the general method in the case of a free massive scalar field in a fixed AdS

background, reproducing in a concise way a number of known results. We then move on in

section 5 to include gravity and we describe in detail our method for computing the holo-

graphic effective action of the dual theory in a systematic way based on Hamilton-Jacobi

theory. This method is then applied to the cases of scalars minimally and conformally

coupled to gravity in sections 6 and 7 respectively, which contain our main results. In sec-

tion 6 we generalize the non-supersymmetric Poincaré domain wall solutions found in [23]

to arbitrary dimension, while the same is done for the instanton solution found in [24] in

section 7. Moreover, we find all possible domain wall solutions - both flat and curved -

for the conformally coupled scalar in any dimension, and we show that this completely

determines the two-derivative effective action of the dual theory. Some technical results

regarding the variational problem for minimally and conformally coupled scalars, as well

as the Hamilton-Jacobi method for these systems, are collected in the appendix.

2. Multi-trace deformations in QFTs with a large N limit

In a quantum field theory with a standard large N limit, large N factorization allows for

a universal description of generic multi-trace deformations. As we now briefly review, the

effect of such a deformation can most naturally be described in terms of the generating

functional of the deforming operator and its Legendre transform [7].

Let O(x) be a local, generically composite, gauge-invariant and single-trace operator

transforming in some representation of the relevant rank N group. For concreteness we take

this to be the adjoint representation and we normalize the operator such that 〈O〉 = O(N0)
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as N → ∞. The dynamics of O(x) is encoded in the generating functional of connected

correlators, W [J ], which can be represented as a path integral over the fundamental degrees

of freedom, {φ}, of the theory, weighted by the action S[φ], as

e−W [J ] =

∫
[dφ]e−S[φ]−N2

R

ddxJ(x)O(x). (2.1)

Since W [J ] is O(N2) as N → ∞, it is convenient to work instead with w[J ] ≡ N−2W [J ].

In particular, the one-point function of O(x) in the presence of a source is given by

σ(x) ≡ 〈O〉J =
δw[J ]

δJ
. (2.2)

Alternatively, the dynamics can be encoded in the Legendre transform of the generating

functional, Γ[σ], given by

e−Γ[σ] =

∫
[dJ ]e−N2w[J ]+N2

R

ddxJ(x)σ(x). (2.3)

Γ[σ] is known as the effective action of the local operator O(x), or the generating functional

of 1PI diagrams. Again, it is useful to introduce the O(N0) quantity Γ̄[σ] = N−2Γ[σ], such

that

J(x) = −δΓ̄[σ]

δσ
. (2.4)

Suppose now that the action is deformed by a function, f(O), of the local operator

O(x) as Sf [φ] = S[φ] + N2
∫

ddxf(O). In the following we will only consider deformations

for which f(0) = 0. The question we want to address now is how this deformation modifies

the functionals w[J ] and Γ̄[σ]. As we now show, large N factorization allows for a very

simple and universal answer in the large-N limit, which is summarized in table 1. Of

course, beyond the large N approximation, the answer to this question is non-universal

and much more involved, since the operator O(x) will generically mix with other operators

at 1/N order. We will only consider the leading large N behavior here.

Consider first the generating functional in the deformed theory, which is given by

e−N2wf [Jf ] =

∫
[dφ]e−S[φ]−N2

R

ddx(JfO+f(O))

=

∫
[dφ]e−S[φ]−N2

R

ddx(JO+f(O)−f ′(σ)O)

N→∞≈ e−N2w[J ]e−N2
R

ddx(f(σ)−σf ′(σ)), (2.5)

where we introduced J ≡ Jf + f ′(σ) in the second line in order to remove the linear term

from f(O) so that large N factorization can be used in the last step. This proves the result

shown in the third row of table 1. Similarly, the effective action in the deformed theory is

given by

e−N2Γ̄f [σ] =

∫
[dJf ]e−N2wf [Jf ]+N2

R

ddxJf σ

N→∞≈
∫

[dJ ]e−N2w[J ]e−N2
R

ddx(f(σ)−σf ′(σ))eN2
R

ddx(J−f ′(σ))σ

= e−N2Γ̄[σ]−N2
R

ddxf(σ), (2.6)
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Undeformed Deformed

Source J Jf = J − f ′(σ)

VEV σ σf = σ

Generating functional w[J ] wf [Jf ] = w[J ] +
∫

ddx (f(σ) − σf ′(σ))|σ=δw/δJ

Effective action Γ̄[σ] Γ̄f [σ] = Γ̄[σ] +
∫

ddxf(σ)

Table 1: The effect of a generic multi-trace deformation on the generating functional and on the

effective action in the large N limit.

where we have used [dJf ] = [dJ ]. This justifies the entry in the last row of table 1. As

we will review below, these universal results make manifest the fact that the AdS/CFT

dictionary maps multi-trace deformations of the boundary theory to a modification of the

boundary conditions imposed on the bulk fields. Before, however, we need to understand

the boundary value problem for such bulk fields in AdS.

3. The boundary value problem for the Klein-Gordon operator in AlAdS

spaces

The gauge/gravity duality generically relates a theory of gravity in an asymptotically lo-

cally anti de Sitter (AlAdS) space M (see [30] for a definition of an AlAdS space in the

context of the gauge/gravity duality) to a non-gravitational theory residing on the con-

formal boundary ∂M of M. Multi-trace deformations of the boundary theory are then

related to the choice of boundary conditions imposed on the bulk fields [1 – 5, 8, 6, 7]. The

fact that the boundary of an AlAdS space is a conformal boundary, however, demands

some extra care when analyzing the boundary value problem. In particular, any rigorous

treatment should account for the following fact [31]:

By the very definition of a ‘conformal boundary’, any bulk field does not in-

duce a field on the boundary, but rather a field up to Weyl rescalings, i.e. a

‘conformal class’. It follows that, in the absence of a conformal anomaly, any

boundary condition must be imposed on the conformal class and not on a con-

formal representative. In other words, any boundary condition must be imposed

on a ‘class function’. Although, this cannot be achieved if a conformal anomaly

is present, in that case one must ensure that the boundary condition is imposed

on a quantity that has a well defined transformation under Weyl rescalings.

This requirement, which we will make more precise and concrete below, has a number

of important and inevitable consequences that are often overlooked:

• The well known boundary covariant counterterms must be added to the action before

one can study the variational problem and impose boundary conditions.
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• With the standard Dirichlet boundary conditions, the one-point function of an op-

erator O(x) is in general not given by the normalizable mode of the corresponding

bulk field. It is given by the renormalized radial momentum [32]. In general, the

two differ by a local functional of the non-normalizable mode, which is necessary to

ensure that the Ward identities are fulfilled [33, 30]. In particular, it is the relation

between the non-normalizable mode and the renormalized radial momentum which

is fundamentally related to the choice of boundary conditions and not the relation

between the non-normalizable and normalizable modes. Only when the two happen

to agree is one justified to use the normalizable mode instead of the renormalized

momentum.

In view of these subtleties, and for the sake of completeness, we find it worthwhile to

devote this section to a careful and systematic analysis of the boundary value problem

and to review how the AdS/CFT dictionary relates the choice of boundary conditions

for the bulk fields to multi-trace deformations of the boundary theory. We also take this

opportunity to spell out the formalism and notation which will be used in the subsequent

sections.

The metric on an AlAdS manifold, M takes the form1

ds2 = dr2 + γij(r, x)dxidxj , (3.1)

where γij(r, x) ∼ e2r/lg(0)ij(x) as r → ∞ and hence, the conformal boundary, ∂M, is

located at r = ∞. The metric g(0)ij(x) is a metric on the conformal boundary, or more

precisely, a representative of the conformal class of boundary metrics. AlAdS metrics

arise naturally as solutions of Einstein’s equations with a negative cosmological constant,

possibly including matter whose stress tensor falls fast enough asymptotically [30].

To set up the formalism, we will study the simplest possible boundary value problem

on the background of such a manifold, namely that of the Klein-Gordon equation for a

scalar field, (
−¤g + m2

)
φ = 0. (3.2)

One can include interactions in this equation, and we will do so later on, but these are

irrelevant for the boundary value problem as long as they do not modify the asymptotic

form of the metric. Any solution of (3.2) in the background (3.1) takes the asymptotic

form

φ ∼





e−∆−r/l(φ−(x) + · · · ) + e−∆+r/l(φ+(x) + · · · ), m2l2 > −(d/2)2,

e−dr/2l r
l (φ−(x) + · · · ) + e−dr/2l(φ+(x) + · · · ), m2l2 = −(d/2)2,

(3.3)

where ∆±, ∆+ ≥ ∆−, are the roots of the equation m2l2 = ∆(∆ − d), and the functions

φ−(x) and φ+(x), known respectively as the non-normalizable and normalizable modes,

are totally arbitrary functions of the transverse coordinates, xi. A boundary condition

amounts to a choice of a function J(φ−, φ+) of the two modes that is kept constant on

the boundary, thus reducing by half the degrees of freedom. The best known example is

1We use Euclidean signature throughout this paper.
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that of Dirichlet boundary conditions, where one chooses J(φ−, φ+) = φ−, and so the only

degree of freedom remaining is the normalizable mode φ+.

We could now try to study boundary conditions by considering different choices of the

function J(φ−, φ+), which is in fact what has been done in the vast majority of the literature

on the subject. Although, this approach happens to work in certain cases, generically it

is fundamentally problematic for two closely related reasons. Firstly, the quantity φ+,

contrary to the non-normalizable mode φ−, has no well defined transformation under Weyl

rescalings and hence it is an ill defined quantity from the boundary point of view. Secondly,

precisely because φ+ is not well defined on the boundary, the function J(φ−, φ+) one would

use to define the boundary condition does not have a direct meaning (as a source) on the

boundary. As we mentioned above and we will now explain in detail, both problems are

resolved if one replaces φ+ in this analysis with the renormalized radial momentum [32],

which does have a definite transformation under Weyl rescalings and hence it is a well

defined boundary quantity, like φ−. The renormalized radial momentum in general differs

from φ+ by a local functional of φ−, which is essential to ensure that the Ward identities are

satisfied [30]. It is precisely these local terms that make the renormalized momentum have

a well defined transformation rule under Weyl rescalings. Unless these local terms happen

to vanish, and one needs to demonstrate that they do, we are forced to use the radial

Hamiltonian formulation in order to discuss generalized boundary conditions consistently.

3.1 The variational problem in the presence of a conformal boundary

Since the conformal boundary, ∂M, is located at infinity, we need to introduce a regulating

surface, Σr, diffeomorphic to the boundary, but at a finite value of the radial coordinate r.

One then formulates the variational problem on Σr and in the end the regulator is removed

by sending r → ∞. It is crucial, however, to keep in mind that the conformal boundary ∂M
and the hard boundary introduced by the regulating surface Σr are very different in nature.

In particular, the regulating surface breaks explicitly the invariance under Weyl rescalings

that the conformal boundary possesses. It follows that not any variational problem that

makes sense on Σr will make sense as the regulator is removed. It will only make sense

provided the variational problem on Σr is formulated in terms of conformal class functions.

Before we discuss how this can be achieved, though, let us consider the general variational

problem on the regulating surface Σr.

Given an action S[φ] on a space Mr with a boundary Σr = ∂Mr, one is naturally led

to the radial Hamiltonian formulation of the bulk dynamics by considering the variational

problem for the action S[φ]. Indeed, a generic variation of the bulk action with respect to

the scalar field generates a boundary term of the form2

δφS =

∫

Σr

ddxπφδφ, (3.4)

where πφ is the canonical momentum conjugate to φ and the Hamiltonian ‘time’ is taken

to be the radial coordinate r orthogonal to the boundary Σr. For the bulk action giving

2The complete expressions for the variation of the action when the scalar is minimally or conformally

coupled to gravity are presented in appendix A.
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the Klein-Gordon equation as the equation of motion, the canonical momentum is simply

πφ =
√

γφ̇, where the dot denotes a derivative with respect to the radial coordinate, r.

Were Σr the true boundary, we could impose any boundary condition compatible with

the variation (3.4). But we actually have to send r → ∞ in the end, and the integrand

in (3.4) does not have a well defined transformation under shifts in r. Hence, if we impose

a boundary condition on (3.4), we will not be able to ‘push’ this boundary condition to

the true boundary at r → ∞. What we need to do first, is to find a covariant way

of modifying (3.4), without changing the bulk dynamics of course, such that the result

has a well defined transformation - in fact, remains invariant - under radial shifts. A

systematic way of constructing quantities which are both covariant with respect to Σr

diffeomorphisms and have a well defined transformation under radial shifts in the vicinity

of the conformal boundary ∂M, is based on the following observation [32]: The asymptotic

form φ ∼ e−∆−r/lφ−(x) of the scalar field allows us to write the radial derivative in the

from3

∂r =

∫

Σr

ddxφ̇
δ

δφ
∼ 1

l
δD, (3.5)

where

δD = −∆−

∫

Σr

ddxφ
δ

δφ
, (3.6)

is the dilatation operator, and ∼ means that only the leading asymptotic behavior as

r → ∞ is shown. It follows that quantities that have a well defined transformation under

radial shifts correspond to eigenfunctions of the dilatation operator. However, by trading

the radial derivative for the dilatation operator we also automatically achieve covariance

with respect to Σr diffeomorphisms. The dilatation operator (3.6), therefore, provides us

with a way to decompose the integrand in (3.4), which does not transform in a controlled

way under radial translations, into pieces with a well defined transformation.

This is achieved by expanding the canonical momentum πφ in eigenfunctions of the

dilatation operator as

πφ =
√

γ
(
π(∆−) + · · · + π(∆+) + · · ·

)
, (3.7)

where δDπ(n) = −nπ(n) for all n.4 This is simply a formal expansion at this point, as

is (3.3), but the fact that φ and πφ do admit the expansions (3.3) and (3.7) respectively,

is a consequence of the equation of motion. Since πφ =
√

γφ̇, one can insert the expan-

sion (3.7) in (3.5) to obtain a formal expansion of the radial derivative in covariant func-

tional operators of definite dilatation weight. Substituting this expansion for the radial

derivative, together with the momentum expansion (3.7), into the equation of motion (3.2)

and matching terms of equal dilatation weight one can determine iteratively all terms π(n)

for n < ∆+ as local functionals of φ. The fact that these terms turn out to be local

3In general, one must sum over all induced fields on Σr , including the induced metric, γij . In particular,

the dilatation operator contains the term
R
Σr

ddx2γij
δ

δγij
and so it acts on the volume element on Σr as

δD
√

γ = d
√

γ.
4A logarithmic term should be included in general to account for a possible conformal anomaly. In the

presence of such an anomaly, π(∆+) transforms inhomogeneously under the dilatation operator [32].
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functionals of the induced field φ is the crucial ingredient which allows us to formulate the

boundary value problem on the conformal boundary. In particular, we can write
∫

Σr

ddx
√

γ
∑

n<∆+

π(n)δφ = −δSct[φ], (3.8)

where Sct[φ] is a local functional of φ. From (3.4) then follows that if the local functional

Sct on Σr is added to the bulk action on Mr, then a generic variation of the total action

produces the boundary term5

δ(S + Sct) =

∫

Σr

ddx
√

γπ(∆+)δφ. (3.9)

Even though this might seem little different from the original expression (3.4), the difference

is in fact fundamental: contrary to (3.4) the integrand in (3.9) is invariant under radial

translations since δD(
√

γπ(∆+)δφ) = (d − ∆+ − ∆−)
√

γπ(∆+)δφ = 0, where we have used

δD
√

γ = d
√

γ (see footnote 3). If follows that we can now send r → ∞ and any boundary

condition formulated in terms of φ and the renormalized momentum π(∆+) will remain

unchanged and meaningful in this limit.

Two comments are in order here. First, note that the counterterms we have defined

via (3.8), and which were introduced only on the basis that they are required to make the

variational problem on the conformal boundary well posed, are identical with the standard

boundary counterterms that are traditionally added to make the on-shell action finite.

Indeed, the fact that (3.9) has a finite limit as r → ∞ implies that the renormalized

on-shell action Sren ≡ (S + Sct), remains finite as the regulator is removed. The same

local counterterms are therefore required to make the variational problem well posed and

to remove the infra red divergences of the on-shell action. We would like to view the

former, however, as the more fundamental property. Indeed, the divergences of the on-shell

action are merely a manifestation of the fact that the variational problem is not formulated

properly [31]. Of course, there is as usual a freedom of adding extra finite local terms to

the counterterms Sct. In the case of Dirichlet boundary conditions this is the well known

renormalization scheme dependence. As we will see below, however, the interpretation

of this freedom in the dual field theory crucially depends on the boundary conditions.

In particular, for boundary conditions other than Dirichlet, it does not correspond to a

renormalization scheme dependence.

The second comment concerns some notation. It is very useful to introduce

π̂(∆+) ≡





limr→∞ e∆+r/lπ(∆+), ∆+ > d/2,

limr→∞ r2edr/2lπ(∆+), ∆+ = d/2,

(3.10)

which allows us to explicitly evaluate the limit r → ∞ in (3.9) as

δ(S + Sct) =

∫

∂M
ddx

√
g(0)π̂(∆+)δφ−. (3.11)

5Terms of higher dilatation weight drop out in the limit r → ∞.
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J(φ−, π̂(∆+)) SJ [φ−, π̂(∆+)]

Dirichlet J+ = φ− S+ = 0

Neumann J− = −π̂(∆+) S− = −
∫
∂M ddx

√
g(0)φ−π̂(∆+)

Mixed Jf− = −π̂(∆+) − f ′(φ−) Sf− = S− +
∫
∂M ddx

√
g(0)(f(φ−) − φ−f ′(φ−))

Table 2: The three inequivalent boundary conditions for a scalar field in an AlAdS background,

along with the corresponding boundary terms required to impose them. Notice that the Neumann

boundary condition is a special case of the Mixed boundary condition, obtained by choosing the

function f(φ−) to be identically zero.

The boundary value problem on the conformal boundary is then naturally formulated in

terms of the two modes φ−(x) and π̂(∆+). Comparing the expansions (3.3) and (3.7), e.g. for

∆− 6= ∆+, one finds that π̂(∆+) = −(∆+−∆−)φ+(x)/l+C[φ−(x)], where C[φ−(x)] is a local

functional of φ−(x) depending on the space dimension as well as on the bulk dynamics.6

Interestingly, as we will later show, for the boundary conditions relevant to multi-trace

deformations it turns out that C[φ−(x)] vanishes identically - thus a posteriori justifying

the use of φ+(x) instead of the renormalized momentum in the literature. However, in

general, it is π̂(∆+) and not the normalizable mode which has a well defined transformation

under boundary Weyl transformations.

3.2 Boundary conditions

The expression (3.11) is our starting point for studying the possible boundary conditions

on the conformal boundary. A boundary condition is in general a choice of a function,

J(φ−, π̂(∆+)), of the two independent modes, φ− and π̂(∆+), that is kept fixed on the

boundary. Note that we have now replaced φ+ with π̂(∆+), which as we discussed, is

necessary in order for the boundary condition to be well defined on the conformal boundary.

In order to impose the boundary condition δJ(φ−, π̂(∆+)) = 0, we need to add a suitable

(finite) boundary term, SJ [φ−, π̂(∆+)], to the action such that7

δ(S + Sct + SJ) =

∫

∂M
ddx

√
g(0)BJ(φ−, π̂(∆+))δJ(φ−, π̂(∆+)), (3.12)

where BJ(φ−, π̂(∆+)) is some function that depends on the choice of J(φ−, π̂(∆+)).

A physical solution of the equations of motion, subject to the boundary condition

defined by J(φ−, π̂(∆+)), satisfies J(φ−, π̂(∆+)) = 0. Note that this definition of ‘physical

6We will see below that in the case of Dirichlet boundary conditions bπ(∆+) is identified via the AdS/CFT

dictionary with the one-point function of the dual operator in the presence of an arbitrary source φ−(x).

The fact that the one-point function generically contains a non-linear but local functional, C[φ−(x)], of the

source was shown originally in [33].
7The apparently alternative boundary condition BJ (φ−, bπ(∆+)) = 0, is not acceptable in the context of

the AdS/CFT correspondence. The reason is that such a boundary condition really reduces by half the

degrees of freedom. In AdS/CFT, however, the boundary condition does halve the bulk degrees of freedom,

but the lost half reappears as a source on the boundary.

– 10 –



J
H
E
P
0
5
(
2
0
0
7
)
0
7
5

solutions’ excludes solutions that describe single-trace deformations, which require a non-

zero source. It follows that there are two qualitatively different universality classes of

possible boundary conditions, depending on whether the mode φ−(x) in the corresponding

physical solutions is zero or not, which lead to different leading asymptotics for the physical

solutions. φ−(x) is zero in the physical solutions provided the source J(φ−, π̂(∆+)) is a

function of φ− only. When φ−(x) is non-zero in the physical solutions, then the relation

J(φ−, π̂(∆+)) = 0 determines π̂(∆+) as a function of φ−(x). The three inequivalent choices

of boundary conditions, along with the corresponding boundary term, SJ [φ−, π̂(∆+)], that

should be added to the action are listed in table 2.8

However, requiring that the (static) solutions subject to the boundary conditions in

table 2 are perturbatively stable imposes restrictions on the allowed values of the scalar

mass m2. In particular, for Dirichlet boundary conditions, stability requires that the

scalar mass satisfies the Breitenlohner-Freedman (BF) bound [22], m2l2 ≥ −(d/2)2, while

if φ−(x) 6= 0 in the solution, i.e. for Neumann and Mixed boundary conditions, stability

requires that the mass squared is in the range [22, 34, 35]

−
(

d

2

)2

≤ m2l2 ≤ −
(

d

2

)2

+ 1. (3.13)

We will later show that these stability conditions follow immediately from the requirement

that there exists a stable holographic effective potential for the dual operator. Moreover,

generically only one boundary condition will be consistent with supersymmetry once the

scalar is embedded in some gauged supergravity [22, 36].

The mass constraint (3.13) for the Neumann or Mixed boundary conditions to be

admissible has a remarkable and somewhat surprising consequence. Namely, it ensures

that the local functional, C[φ−(x)], which, as we pointed out above, distinguishes in general

the renormalized momentum π̂(∆+) from the normalizable mode φ+(x), vanishes identically.

We will not give a general proof of this statement here, but one can understand it as follows.

Generically, a non-zero C[φ−(x)] can only arise if there are intermediate terms between the

two modes, φ−(x) and φ+(x), in the asymptotic expansion (3.3). This can happen only if

∆+ − ∆− > ∆−. However, (3.13) implies that for d > 2, ∆+ − ∆− ≤ ∆−. Therefore, at

least for d > 2 and for a mass in the range (3.13), one has π̂(∆+) = −(∆+ − ∆−)φ+(x)/l

exactly, and hence, φ+(x) is well defined on the boundary in this case.

3.3 Solution of the boundary value problem

The general solution of the boundary value problem with the boundary condition

δJ(φ−, π̂(∆+)) = 0 consists in finding the most general regular solution of the bulk equa-

tions of motion as a functional of the arbitrary source J(φ−, π̂(∆+)) ≡ J(x). This involves

two steps:

8These boundary conditions exhaust all possible relations between bπ(∆+) and φ−(x) in the physical

solutions, and so all possible Hilbert spaces obtained by quantizing the scalar field. Nevertheless, there is

an apparent redundancy in the choice of the source J(φ−, bπ(∆+)). For example, J = φ− leads to the same

Hilbert space as J = φ2
−. In the context of the AdS/CFT correspondence, this redundancy is mapped to

an analogous redundancy in defining the generating functional of a given operator, and in particular in the

choice of its source. Table 2 shows the standard minimal choices.
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• Radial problem

One solves the radial equation of motion exactly, imposing regularity in the interior.

The result of this calculation is that (i) π̂(∆+) is determined as a non-local functional

of φ−9 and (ii) the full bulk solution, φ(r, φ−(x)), is obtained as a non-local functional

of φ−(x).

• Transverse problem

To complete the solution of the boundary value problem, one needs to determine

φ−(x) as a functional of the arbitrary source J(x). Having determined the functional

π̂(∆+)[φ−] by solving the radial problem, this is achieved by solving the equation

J(φ−, π̂(∆+)[φ−]) = J(x), (3.14)

for φ−[J ]. For the boundary conditions in table 2, (3.14) reads

φ− = J(x), Dirichlet,

−π̂(∆+)[φ−] = J(x), Neumann,

−π̂(∆+)[φ−] − f ′(φ−) = J(x), Mixed. (3.15)

Hence, the transverse problem is trivial for Dirichlet boundary conditions, but non-

trivial for Neumann and Mixed boundary conditions. In all cases, inserting the

resulting solution φ−[J ] back in the bulk solution of the radial problem we obtain the

full solution φ(r, φ−[J(x)]).

Although the general prescription for solving the boundary value problem involves only

these two simple steps, in practice there are very few cases where one is able to carry out

either of these two steps. In particular, the bulk equations of motion are generically non-

linear, which makes the solution of the radial problem very difficult. On the other hand,

if the function f ′(φ−) is non-linear, then the solution of the transverse problem (3.14)

becomes very difficult too. In the next section, however, we will discuss a toy model for

which it is possible to carry out the above prescription explicitly.

3.4 The on-shell action and the AdS/CFT dictionary

Assuming we have solved the boundary value problem with arbitrary sources to obtain the

exact solution φ(r, φ−[J ]), we can evaluate the on-shell action, I[J ]. This involves three

pieces: the bulk action, S, the covariant boundary counterterms, Sct, and the boundary

term, SJ , defining the boundary condition. Namely,

I[J ] = (S + Sct + SJ)|φ , (3.16)

where the limit r → ∞ is implicit. By construction, the value of the sum of these terms

remains finite in this limit, and naturally, it is a functional of the source, J . The AdS/CFT

9This should in no way be confused with the boundary condition, which itself imposes another - algebraic

- relation between the modes.
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Dirichlet Neumann Mixed

J J+ ≡ φ− J− ≡ −bπ(∆+) Jf− ≡ −bπ(∆+) − f ′(φ−)

σ bπ(∆+) φ− φ−

W [J ] I+[J+] I−[J−] If− [Jf− ]

Γ[σ] I−[−bπ(∆+)] I+[φ−] I+[φ−] +
R

∂M ddx
√

g(0)f(φ−)

〈T ij〉 = −2√
g(0)

δW
δg(0)ij

−2bπ(d)
ij −2bπ(d)

ij − φ−J−g(0)
ij −2bπ(d)

ij −
`
f(φ−) + φ−Jf−

´
g(0)

ij

〈T i
i 〉 −(d − ∆+)Jσ −(d − ∆−)Jσ −(d − ∆−)Jσ − d

“
f(σ) − ∆−

d
σf ′(σ)

”

Table 3: The gravity/QFT dictionary.

dictionary, or more generally the gravity/quantum field theory dictionary, identifies the on-

shell action, I[J ], with the generating functional of connected correlation functions of the

operator dual to the scalar field φ. Namely,

Z[J ] ≡ e−W [J ] =
〈
e−

R

JO
〉
≈ e−I[J ], (3.17)

where the ≈ sign in the last equality means that the identification is understood in some

certain limit, e.g. in the large N limit, such that supergravity is a good approximation to

the field theory dual.10 Since the on-shell action, I[J ], is identified with the generating

functional of connected correlation functions, W [J ], its Legendre transform, Γ[σ], given by

Γ[σ] = W [J ] −
∫

∂M
ddx

√
g(0)Jσ, (3.18)

is the effective action of the dual operator, i.e. the generating functional of 1PI diagrams.

In particular, the transverse problem (3.14) has a direct interpretation in the dual field

theory as the ‘gap equation’ (2.4). From table 3 it is evident that, although the solution

of the transverse problem is required in order to evaluate the generating functional, W [J ],

for Neumann and Mixed boundary conditions (we have seen that the transverse problem

is always trivial for Dirichlet boundary conditions), only the solution of the radial problem

is necessary to evaluate the effective action, Γ[σ].

In table 3 we summarize the identifications between the bulk and boundary quantities,

according to the gravity/quantum field theory dictionary, for the three boundary condi-

tions in table 2. Note that, since the on-shell action for Neumann boundary conditions is

the Legendre transform of the on-shell action for Dirichlet boundary conditions (see the

boundary term S− in table 2), the effective action for Dirichlet boundary conditions is given

10We will not be specific about this limit since it depends crucially on the particular AdS/CFT duality.

For example, in the most studied AdS5/CFT4 duality between N = 4 super Yang-Mills and Type II B

string theory, the supergravity approximation involves not only the large N limit, but also the large ’t

Hooft coupling limit. However, in the duality between M-theory on AdS4 × S7 and the N = 8 SCFT in

three dimensions, the supergravity approximation involves only the large N limit as there is no other free

parameter in this case.
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by the on-shell action for Neumann boundary conditions and vice versa. Moreover, the

effective action for Mixed boundary conditions is given by the on-shell action for Dirichlet

boundary conditions plus a term involving the function f(φ−). Comparing the effective

actions for Neumann and Mixed boundary conditions in table 3 with the expressions for

the undeformed and deformed effective actions given in table 1, we reach the conclusion

that the Mixed boundary conditions correspond to a multi-trace deformation of the QFT

dual to the Neumann boundary conditions [1].

In the penultimate row of table 3 we show the renormalized VEV of the stress tensor

of the dual theory in terms of the renormalized radial momentum, π̂(d)
ij, conjugate to the

induced metric, γij , (see appendix A) for the three different boundary conditions. Note

that the difference in these expressions for the VEV of the stress tensor is due to the

boundary terms in table 2, which are required to impose each boundary condition. Using

the fact that the bulk equations of motion determine that the trace of π̂(d)
ij is related to

the renormalized scalar momentum, π̂(∆+), by π̂(d) = ∆−π̂(∆+)φ−/2 [32], these expressions

allow us to write down the Conformal Ward identity for each boundary condition. These

Ward identities are shown in the last row of table 3. We conclude that the Dirichlet and

Neumann boundary conditions lead to a conformal field theory dual, since 〈T i
i 〉 = 0 for

vanishing source, while the Mixed boundary condition leads to a conformal dual theory

only if f(φ−) ∝ φ
d/∆−
− . In that case, the Mixed boundary conditions describe a marginal

multi-trace deformation of the CFT dual to the Neumann boundary conditions. Moreover,

in the cases of a CFT dual, we see that the conformal dimension of the operator dual to

the scalar field is ∆+ for Dirichlet boundary conditions and ∆− for Neumann and Mixed

boundary conditions. This is as expected, since the leading asymptotic behavior of the

physical solutions is determined by ∆+ for Dirichlet boundary conditions (i.e. φ− = 0),

but by ∆− for Neumann and Mixed boundary conditions (φ− 6= 0).

4. Toy model

The boundary value problem can be solved in complete generality, following the prescription

outlined above, for a free scalar field in a fixed AdS background with the action

S =

∫
dd+1x

√
g

(
1

2
gµν∂µφ∂νφ +

1

2
m2φ2

)
. (4.1)

The metric here is (3.1) with γij = e2r/lδij , which is the metric of exact AdSd+1 (more

precisely Hd+1) in the upper half plane coordinates. The equation of motion is of course

the Klein-Gordon equation (3.2). Even though the fact that the bulk equation of motion is

linear means that it is possible to solve the radial problem exactly, the transverse problem

remains in general intractable, except for certain linear boundary conditions.

4.1 General solution with linear boundary conditions

Counterterms. In order to compute the renormalized momentum, as well as the on-shell

action, we need to know the covariant boundary counterterms. This is done, as we discussed
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above, by inserting the covariant expansion (3.7) of the canonical momentum, and of the

radial derivative (3.5), into the equation of motion (3.2). This iteratively determines [37, 38]

π(∆−) = −∆−
l

φ,

π(∆−+2) =
−l¤γφ

(d − 2∆− − 2)
,

π(∆−+4) = − l3 (−¤γ)
2 φ

(d − 2∆− − 2)2(d − 2∆− − 4)
, · · · (4.2)

This procedure breaks down at order ∆+ leaving π(∆+) undetermined. From (3.8) now we

see that the counterterms are obtained by integrating these momenta with respect to the

scalar field. This gives [30, 37, 38]

Sct =
1

2

∫

Σr

ddx
√

γφ

(
−∆−

l
φ +

−l¤γφ

(d − 2∆− − 2)
− l3 (−¤γ)

2 φ

(d − 2∆− − 2)2(d − 2∆− − 4)
+ · · ·

)
.

(4.3)

If we restrict to the mass range (3.13), which is necessary in order to consider Neumann and

Mixed boundary conditions, then only the first term in (4.3) is relevant since ∆+ ≤ ∆−+2

in this case. For Dirichlet boundary conditions, however, more terms must be kept in

general.

Radial problem. The most general solution of the radial part of the equation of mo-

tion (3.2) that is regular in the interior can be written in two equivalent forms. The first is

an exact expression for the canonical momentum as a covariant functional of the induced

field φ, namely [37, 38]

πφ[φ] =
√

γφ̇ =
√

γ
1

l

(
−d

2
− l

√
−¤γ

K ′
ν

(
l
√

−¤γ

)

Kν

(
l
√

−¤γ

)
)

φ, (4.4)

where ν = (∆+ − ∆−)/2 and Kν is the modified Bessel function that is regular for large

argument. Fourier transforming (4.4) and solving the resulting linear first order equation

gives the second form

φ(r, φ−(x)) =
lν

2ν−1Γ(ν)
e−dr/2l

∫
ddp

(2π)d
φ̃−(p)pνKν

(
lpe−r/l

)
eip·x, (4.5)

where φ̃−(p), which appears as the integration constant of the first order equation, is the

Fourier transform of an arbitrary function φ−(x). Using the asymptotic form of the Bessel

function, Kν(lpe−r/l) ∼ 2ν−1l−νΓ(ν)eνr/lp−ν , as r → ∞, we see that φ ∼ e−∆−r/lφ−(x)

asymptotically, in agreement with (3.3).

The form (4.4) is particularly useful because, by expanding the Bessel function for small

argument, one automatically obtains the covariant expansion (3.7), but now including

the renormalized momentum π(∆+). For 0 < ν < 1, which corresponds to the mass
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range11 (3.13), this is

π̂(∆+)[φ−] =

(
l

2

)2ν−1 Γ(1 − ν)

Γ(ν)
(−¤)ν φ−. (4.6)

This non-local relation is the essential ingredient in order to address the transverse problem.

Transverse problem. Since the transverse problem (3.14) is trivial for Dirichlet bound-

ary conditions, the solution of the radial problem, (4.4) or (4.5), is sufficient to evaluate the

on-shell action. The result is shown in the second column of table 4. From table 3 follows

that this also allows us to evaluate the effective action for Neumann and Mixed boundary

conditions, since it is directly related to the on-shell action for Dirichlet boundary condi-

tions. For the Mixed boundary conditions then, which include the Neumann as a special

case, the effective action is

Γf− [φ−] =

∫
ddx

(
1

2

(
l

2

)2ν−1 Γ(1 − ν)

Γ(ν)
φ− (−¤)ν φ− + f(φ−)

)
. (4.7)

Functionally differentiating this with respect to the VEV, we explicitly see that the trans-

verse problem (3.14), which, using (4.6), takes the form

−
(

l

2

)2ν−1 Γ(1 − ν)

Γ(ν)
(−¤)ν φ− − f ′(φ−) = J(x), (4.8)

is nothing but the gap equation (2.4).

Solving (4.8) for φ−[J ] is in general not possible unless f(φ−) = ξφ2
−, for some constant

ξ. As we have seen, this corresponds to a double-trace deformation of the dual theory. With

this special choice of Mixed boundary conditions, the transverse problem is easily solved and

the on-shell action can be evaluated. The results are shown in table 4. Moreover, inserting

the expressions for φ−[J ] given in table 4 in the solution (4.5), we obtain the full solution

to the boundary value problem with the corresponding linear boundary conditions. Note

that the expression for the on-shell action in the presence of a double-trace deformation

shown in table 4 is in complete agreement with the corresponding expressions in e.g. [9],

but ours are manifestly cut-off independent.

4.2 Vacua with non-linear boundary conditions

Even though one cannot solve equation (4.8) in general for non-linear boundary conditions,

we can still find exact solutions of the corresponding sourceless equation. The classification

of such ‘vacuum’12 solutions is essential before one can solve (4.8) perturbatively in the

source, J(x), around each vacuum. We will not attempt a classification of the vacuum

11The endpoints, ν = 0, 1, correspond respectively to the cases where the BF bound and the unitarity

bound are saturated. Whenever ν is an integer the Bessel function involves logarithms. These cases can be

treated similarly. See e.g. [30, 37, 38] for the case of Dirichlet boundary conditions, where logarithms also

appear.
12By the term ‘vacuum’ we do not necessarily refer to a constant or time independent solution φ−. Any

solution to the sourceless equation (3.14) will be called a vacuum.

– 16 –



J
H
E
P
0
5
(
2
0
0
7
)
0
7
5

Dirichlet Neumann Mixed

J J+ ≡ φ− J− ≡ −bπ(∆+) Jf− ≡ −bπ(∆+) − 2ξφ−

φ−[J ] J+ −22ν−1 lΓ(ν)
Γ(1−ν)

(−l2¤)−νJ− −
“
2ξ +

`
1
2

´2ν−1 Γ(1−ν)
lΓ(ν)

(−l2¤)ν
”−1

Jf−

I [J ] Γ(1−ν)

l22νΓ(ν)

R
J+(−l2¤)νJ+ − l22νΓ(ν)

4Γ(1−ν)

R
J−(−l2¤)−νJ− − 1

4

R
Jf−

“
ξ + Γ(1−ν)

l22νΓ(ν)
(−l2¤)ν

”−1

Jf−

Table 4: The solutions of the transverse problem and the on-shell action for all three linear

boundary conditions. ξ is an arbitrary constant corresponding to the deformation parameter of the

double-trace deformation.

solutions for various choices of f(φ−) here. Instead, we now give two examples of non-

trivial vacua which are closely related to the vacua we will construct later on for more

realistic interacting theories.

Constant VEV. For any choice of the function f(φ−), a constant, φ∗
−, that extremizes

f(φ−), i.e. f ′(φ∗
−) = 0, is a solution of the sourceless equation (4.8). Indeed, from (4.7) we

know that f−(φ) is the effective potential of the dual theory. The Fourier transform of a

constant φ∗
− is a delta function in momentum space, φ̃∗

− = φ∗
−(2π)dδ(d)(p). Inserting this

into the general solution (4.5) we obtain an exact solution of the bulk equation of motion

satisfying Mixed boundary conditions. Namely,

φ(r, φ∗
−) =

lν

2ν−1Γ(ν)
e−dr/2lφ∗

− lim
p→0

pνKν

(
lpe−r/l

)
eip·x = e−∆−r/lφ∗

−. (4.9)

Instantons. Non-constant solutions can also be found, at least for certain choices of

the potential f(φ−). To look for non-constant solutions, however, we need an explicit

representation of the operator (−¤)ν . It is in fact easier to find a representation of the

inverse of this operator, which has the integral representation

(−¤)−νΦ(x) =
Γ

(
d
2 − ν

)

22νπd/2Γ(ν)

∫
ddy

Φ(y)

|x − y|d−2ν
, ν > 0. (4.10)

The sourceless equation (4.8) can then be written as the integral equation

φ−(x) +
Γ

(
d
2 − ν

)

2πd/2l2ν−1Γ(1 − ν)

∫
ddy

f ′(φ−(y))

|x − y|d−2ν
= 0. (4.11)

We now look for solutions of the form

φ−(x) =
b

|x|c , (4.12)

for a potential of the form f(φ−) = ξφω
−, where b, c, ξ, ω are constants. Inserting these

into (4.11) and Fourier transforming determines that such a solution exists only if ω > 2,
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i.e. provided the boundary condition is non-linear, and also only if ξ < 0, i.e. when the

effective potential is unbounded from below. Moreover, c and b are given by

c =
2ν

ω − 2
, bω−2 =

2l2ν−1Γ(1 − ν)Γ
(

d
2 − ν

ω−2

)
Γ

(
(ω−1)ν

ω−2

)

ω|ξ|Γ(ν)Γ
(

ν
ω−2

)
Γ

(
d
2 − (ω−1)ν

ω−2

) . (4.13)

Inserting (4.12) into (4.5) we obtain the exact bulk solution

φ(r, φ−(x)) = (4.14)

bl−
2ν

ω−2

Γ
(

d
2 − ν

ω−2

)
Γ

(
(ω−1)ν

ω−2

)

Γ
(

d
2

)
Γ(ν)

e−( d
2
− ων

ω−2)
r
l F

(
ν

ω − 2
,
(ω − 1)ν

ω − 2
;
d

2
;− 1

l2
e2r/lx2

)
.

The asymptotic form of this solution is

φ(r, φ−(x)) ∼
(

b

|x|c
)

e−∆−r/l +
l

2ν
ωξ

(
b

|x|c
)ω−1

e−∆+r/l, (4.15)

i.e. φ+ = l
2ν ωξφω−1

− . Since π̂(∆+) = −2νφ+(x)/l, it follows that (4.14) indeed satisfies

Mixed boundary conditions with f(φ−) = ξφω
−, for Jf− = −π̂(∆+) − f ′(φ−) = 0.

This Euclidean solution is in fact analogous to the instanton solution found in [24] for

a scalar field conformally coupled to four-dimensional gravity, which we will revisit and

generalize below. As for the instanton solution of [24], (4.14) exists only when the effective

potential is unbounded from below, i.e ξ < 0, which means that the deformation induces

an instability in the boundary CFT. In particular, (4.14) describes the decay process of

the trivial vacuum at φ− = 0 to an instability region at φ− → ∞. The decay rate is given

by [39]

P ∝ e−Γf |inst. , (4.16)

where the value of the effective action (4.7) evaluated on the instanton solution is

Γf |inst. =
d(ω − 2)|ξ|
2
(
d − 2νω

ω−2

)bωVol(Sd). (4.17)

5. Effective action from Hamilton’s characteristic function

The free scalar field in a fixed AdS background is a useful example as a boundary value

problem in AlAdS spaces, but, in the context of the AdS/CFT correspondence, it can only

give information on the dual CFT at the conformal vacuum. As soon as the scalar field

acquires a non-zero VEV conformal invariance is broken and one must couple the scalar

to dynamical gravity in order to study holographically the dual field theory. In particular,

although the conformal vacuum generically remains a vacuum of the dual theory when the

latter is deformed by a multi-trace deformation, the deformation may not only destabilize

the conformal vacuum, but also it will generically introduce new vacua. AdS/CFT relates

the problem of stability of the conformal vacuum under multi-trace deformations to the

stability of AdS under the corresponding boundary conditions on the dual bulk fields.
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Both the non-perturbative stability of the conformal vacuum and the possible appear-

ance of new vacua due to a generic multi-trace deformation can be addressed if one knows

the effective action for the deforming operator in the dual field theory. In the large N

limit, the AdS/CFT dictionary relates the effective action of the boundary theory to the

on-shell supergravity action. More specifically, the on-shell action with Dirichlet boundary

conditions is related to the effective action of the theory with Neumann or Mixed bound-

ary conditions and vice versa (see table 3). However, computing the on-shell supergravity

action non-perturbatively in the scalar field - which is required if non-perturbative stabil-

ity is to be addressed - is of course not an easy task. Even though the boundary metric

g(0)ij can be set to a fixed value for this computation, since we are only interested in

the back-reaction of the scalar field on the bulk metric, the bulk equations remain highly

non-linear and generically too difficult to solve. Nevertheless, there is a systematic way to

approximate the effective action away from the conformal vacuum. Since, for conformal

boundary conditions, conformal invariance is only broken spontaneously by the non-zero

VEV of the scalar field, in a vacuum of non-zero scalar VEV the two-point function of the

scalar operator always contains a massless pole, corresponding to the Goldstone boson of

spontaneously broken scale invariance, which dominates the two-point function for small

momenta. This massless pole gives, via the Legendre transform, a standard quadratic ki-

netic term in the effective action for the VEV of the scalar operator. It follows that, at least

for conformal boundary conditions, the effective action admits a derivative expansion away

from the conformal vacuum. But since we know that a generic multi-trace deformation

simply modifies the effective potential in the large N limit, the above argument implies

that the effective action always admits a derivative expansion away from the conformal

vacuum. As we will now see, this fact allows us to systematically construct the effective

action to any order in derivatives, although the computation quickly becomes tedious.

According to standard practice, to evaluate the renormalized on-shell action one needs

to compute two related - yet distinct - quantities. Namely, the covariant boundary coun-

terterms, Sct, and the regularized action, Ir (see (A.6)). Let us take the opportunity here

to emphasize that the split of the computation into two separate computations of Sct and

Ir is only an artificial split reflecting the difference in technical difficulty in computing

these two quantities. While the counterterms can always be computed in full generality

by some version of holographic renormalization, the computation of Ir is far more difficult

and usually requires some approximation. However, if one were able to compute Ir exactly,

then the counterterms, and hence the renormalized on-shell action, can be immediately

deduced by expanding Ir in eigenfunctions of the dilatation operator. In fact, we saw such

an example in section 4, where the exact expression for the momentum (4.4) enabled us

to simply read off the renormalized momentum (4.6). But the advantage of the expan-

sion in eigenfunctions of the dilatation operator is that it works equally well even when

Ir is only known in some approximation, be that a small source expansion or a derivative

expansion. In particular, instead of the traditional 3-step approach: 1. compute Sct in

full generality, 2. compute Ir in some approximation 3. reduce the counterterms in the

approximation used for evaluating Ir, we will use the more efficient 2-step approach: 1.

compute Ir in whatever approximation is suitable 2. extract the renormalized part of Ir by
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expanding it in eigenfunctions of the dilatation operator and keeping terms of weight zero.

This technique was applied to compute renormalized correlation functions in [40], which

involved evaluating Ir in a small source approximation. It can equally well be applied in

the case of a derivative expansion of Ir, which is the relevant approximation here. Hence,

we simply need to worry about the evaluation of the regularized on-shell action Ir, as the

renormalized action can effectively be read off Ir.

The most direct way to compute the regularized on-shell action is via the radial

Hamilton-Jacobi formalism [29].13 This amounts to solving the two functional equations

resulting from inserting the radial momenta, given as functional derivatives of the regular-

ized on-shell action with respect to the induced fields on Σr as in (A.7), in the Hamiltonian

and momentum constraints (A.8). Although the resulting functional differential equations

are generically too complicated to solve, their virtue is that they directly determine the

regularized on-shell action. In practice, this approach is useful if one is able to write down

the most general ansatz for Ir in a certain approximation, or if one is interested in the

‘minisuperspace’ of a certain class of solutions, since then the Hamilton-Jacobi equation

can be simplified drastically. Although the local part of Ir, which will be removed by the

boundary counterterms, always takes the form of a derivative expansion and so can be

determined by an obvious ansatz as in [29], here we are interested in the non-local part of

the regularized action. Finding a suitable ansatz for this non-local part is a much more

difficult question. However, this crucially depends on the physical interpretation of the

regularized action. In particular, while a local derivative expansion of the non-local part

of Ir is useless if Ir is identified with the generating functional of the dual operator, since

a derivative expansion only gives contact terms in the corresponding correlation functions,

it does makes sense to expand the non-local part of Ir in a derivative expansion if it is

interpreted as the effective action of the dual operator. Indeed, we have argued above that

the effective action admits such a local approximation away from the conformal vacuum.

Our method for evaluating the regularized on-shell action then consists of two com-

plementary computations, involving different but not mutually exclusive approximations.

First, we start from the undeformed CFT on a (nearly) flat boundary, in which case the

regularized action in the two-derivative approximation takes the form14

Ir =

∫

Σr

ddx
√

γ

(
W (φ) + Z(φ)R[γ] +

1

2
M(φ)γij∂iφ∂jφ

)
, (5.1)

where W (φ), Z(φ) and M(φ) are functions of the scalar field to be determined. Differen-

tiating (5.1) with respect to the induced metric and the scalar field yields respectively the

13It is worth pointing out that the interpretation of the Hamilton-Jacobi equation for the on-shell action

as the Callan-Symanzik equation for the generating functional of the dual operator in [29] has an obvious

analogue when the AdS/CFT dictionary identifies the on-shell action with the effective action of the dual

operator.
14See [41] for a systematic approach to solving the Hamilton-Jacobi equation in a derivative (long wave-

length) expansion in a similar context.
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momenta (see (A.7))

πij =
√

γ

{(
Z ′′ − 1

2
M

)
∂iφ∂jφ + Z ′DiDjφ − ZRij

+
1

2
γij

[
W + ZR − 2Z ′

¤γφ +

(
1

2
M − 2Z ′′

)
∂kφ∂kφ

]}
,

πφ =
√

γ

{
W ′ + Z ′R − 1

2
M ′∂kφ∂kφ − M¤γφ

}
. (5.2)

These momenta automatically satisfy the momentum constraint in (A.8), which is simply

a consequence of the invariance of (5.1) under Σr diffeomorphisms. Inserting the mo-

menta (5.2) into the Hamiltonian constraint in (A.8) leads to a set of ordinary differential

equations for the functions W (φ), Z(φ) and M(φ), which of course depend on the form of

the Hamiltonian. Having determined these functions, the regularized action is expanded

in eigenfunctions of the dilatation operator (which in this case amounts to a simple Taylor

expansion of W (φ), Z(φ) and M(φ)) and the term of zero dilatation weight, corresponding

to the renormalized action, is isolated. The structure of the resulting renormalized two-

derivative effective action is largely universal as it is determined by conformal invariance.

However, there is a free parameter which is left undetermined both by the above proce-

dure and by conformal invariance. This raises the question as to what is the significance

of this parameter and how it can be fixed. Another question that is left unanswered by

the above computation is how one can evaluate the effective action with general boundary

conditions, i.e. the effective action of the deformed CFT. The diffeomorphism invariance

of the ansatz (5.1) implicitly assumes that conformally invariant boundary conditions are

imposed, which is reflected in the fact that the renormalized action one obtains from this

ansatz is conformally invariant. However, a generic boundary condition corresponding to

a relevant deformation will break this invariance. So, how then are relevant deformations

accommodated in the Hamilton-Jacobi formalism? The answer to both questions is clearly

that the ansatz (5.1) is too restrictive.

Instead of looking for a suitable generalization of the ansatz (5.1), however, we will

try to solve the Hamilton-Jacobi equation exactly - without any ansatz - but in a zero-

derivative approximation. That is, assuming the metric and the scalar are functions of

the radial coordinate only. Clearly, this determines the most general effective potential

and hence it must account for any multi-trace deformation. Moreover, this calculation can

in principle be done for any boundary, not just a (nearly) flat boundary as was assumed

in (5.1). The result will be the exact effective potential on the given boundary. As we will

see, this answers the first question, since if one is able to evaluate the effective potential

on, say, the sphere, then expanding this for small curvature and comparing with the result

of the previous calculation based on the ansatz (5.1) fixes the undetermined parameter in

the two derivative effective action.

Interestingly, upon a choice of a boundary manifold, the zero-derivative approximation

amounts to looking at the ‘minisuperspace’ of certain domain-wall like solutions. In par-

ticular, for a boundary that cannot be written as the direct product of two sub-manifolds,
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this approximation corresponds to looking for domain walls of the form

ds2 = dr2 + e2A(r)g(0)ij(x)dxidxj, φ = φ(r), (5.3)

where g(0)ij(x) is a metric independent of the radial coordinate r. The equations of motion

require that g(0)ij(x) is maximally symmetric, R[g(0)]ij = 1
dR[g(0)]g(0)ij , and has locally

constant scalar curvature, R[g(0)] = kd(d − 1)/l2, where k = 0,±1. The hypersurface Σr

then can be Sd, R
d or Hd, or a quotient of these by a discrete subgroup of their isometry

group. Replacing the induced metric γij as a dynamical field by the warp factor, A(r), and

the canonical momentum πij by the momentum, πA, conjugate to A, which is defined via

πijδγij = πAδA, reduces the Hamilton-Jacobi equation to a PDE for the effective potential

as a function of the two variables A and φ. This can then be viewed as the Hamilton-Jacobi

equation for a standard classical mechanics problem for the generalized coordinates A and

φ. As is well known from Hamilton-Jacobi theory [42], the general solution of the equations

of motion, i.e. the most general solution of the form (5.3) in this case, can be obtained

from any complete integral of the Hamilton-Jacobi equation, which in this case contains

one arbitrary integration constant.15 However, the Hamilton-Jacobi equation admits more

than one complete integrals. In fact, the general solution of the Hamilton-Jacobi equation

contains an arbitrary function - not just a constant. As we will show below, this freedom

in choosing a complete integral for the Hamilton-Jacobi equation in the zero-derivative

approximation corresponds precisely to the choice of boundary conditions.

Put together then, the two-derivative effective action with conformal boundary condi-

tions based on the ansatz (5.1), and the ‘minisuperspace’ approximation of the Hamilton-

Jacobi equation to solutions of the form (5.3), completely determine the two-derivative

effective action of the dual operator on Sd, R
d or Hd (or any of their quotients) and for any

boundary conditions. Moreover, this computation can be generalized to other boundaries

too. For example, one can compute the two-derivative effective action on R × Sd−1 by

solving the Hamilton-Jacobi equation for metrics of the form

ds2 = dr2 + e2A(r)dτ2 + e2B(r)dΩ2
d−1, (5.4)

instead of the domain walls (5.3).

6. Minimal coupling

In this section we apply the above method to the system of a single scalar field minimally

coupled to gravity, which is described by the action

S =

∫

M
dd+1√g

(
− 1

2κ2
R +

1

2
gµν∂µφ∂νφ + V (φ)

)
, (6.1)

where κ2 = 8πGd+1 is the gravitational constant.16 An action of this form generically arises

as a consistent truncation of some gauged supergravity,17 but we need not be specific about

15This is because there is no explicit dependence on the radial ‘time’. The characteristic function for n

variables contains n − 1 arbitrary constants [42].
16See appendix A for a detailed discussion of the variational problem and a derivation of the appropriate

boundary terms.
17Of course, the ‘consistency’ of the truncation must be checked at the level of the equations of motion.
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the embedding of (6.1) into a particular gauged supergravity at this point. We will later

give an example of a potential which allows this action to be embedded into N = 8 gauged

supergravity in four dimensions and, hence, be uplifted to 11-dimensional supergravity, but

we would like to keep the discussion as general as possible here.

The action (6.1) possesses an AdS vacuum of radius l provided the potential has a

negative extremum at φ = φo, such that V ′(φo) = 0, V (φo) = −d(d − 1)/2κ2l2. It follows

that, in the vicinity of this extremum, the potential takes the form

V (φ) = −d(d − 1)

2κ2l2
+

1

2
m2(φ − φo)

2 + o((φ − φo)
2), (6.2)

where m is the mass of the scalar field. Note that, unless the potential is exactly constant,

the location of the extremum is at some fixed value, φo, which can be set to zero by a

redefinition of the scalar field. Moreover, if the mass vanishes, then the potential must be

constant, or else the equations of motion eliminate the mode φ−(x) in the expansion (3.3).

Below we will focus on masses in the range −(d/2)2 ≤ m2l2 < 0, excluding the case of a

constant potential.

6.1 Two-derivative effective action for conformal boundary conditions

Our first task is to determine the renormalized on-shell action corresponding to conformal

boundary conditions using the ansatz (5.1). Using the Hamiltonian (A.9), which is relevant

for the action (6.1), the Hamiltonian constraint leads to three independent equations for

the functions W (φ), Z(φ) and M(φ). Namely,

V (φ) =
1

2

(
W ′2 − dκ2

d − 1
W 2

)
, (6.3)

W ′Z ′ − κ2 d − 2

d − 1
WZ +

1

2κ2
= 0, (6.4)

M = 2κ2 W

W ′Z
′. (6.5)

The last equation gives explicitly the function M(φ) in terms of W and Z. Moreover, the

second equation is a linear equation for Z, whose solution in terms of W is

Z(φ) = − 1

2κ2
Zo

∫ φ dφ̄

W ′Zo
, Zo(φ) ≡ exp

(
κ2 d − 2

d − 1

∫ φ

dφ̄
W

W ′

)
. (6.6)

The regularized two-derivative effective action is therefore determined by the non-linear

equation (6.3) for the function W (φ), which we will call ‘fake superpotential’ for reasons

that will become clear later on. Equation (6.3) can be transformed [32] into the standard

form of Abel’s equation of the first kind [43]. Although its general solution is not known

for an arbitrary scalar potential V (φ), for certain choices of the potential it falls into some

of the known integrability classes of Abel’s equation and it can be solved exactly. We

will discuss such an example below, but in order to determine the renormalized action we

need not solve (6.3) exactly. Indeed, we will now show that some general features of the

solutions of equation (6.3) are sufficient for this purpose.
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m2l2 W (φ)

−(d/2)2 < m2l2 < 0 W±(φ) = − (d−1)
κ2l

− 1
2l∆±φ2 + o

(
φ2

)

m2l2 = −(d/2)2

W+(φ) = − (d−1)
κ2l

− 1
2l

d
2φ2 + o

(
φ2

)

W−(φ) = − (d−1)
κ2l

− 1
2l

d
2φ2

(
1 + 1

log φ

)
+ o

(
φ2

log φ

)

Table 5: The allowed behavior of the fake superpotential in the vicinity of the AdS critical point

at φ = 0.

Firstly, from equations (5.2) follows that the asymptotic form of the induced metric and

of the scalar field is determined by the form of W (φ) in the vicinity of φ = 0. In particular,

requiring the metric to be AlAdS, fixes W (0) = −(d − 1)/κ2l. This, in combination with

the form (6.2) of the scalar potential near φ = 0, determines, depending on the value of

the scalar mass, the allowed behaviors of W (φ) around φ = 0, which are shown in table 5.

Note that there are two possible asymptotic behaviors in each case. The W+ solutions

imply that the non-normalizable mode, φ−(x), vanishes in the corresponding solution of

the bulk equations of motion, which is obtained from W (φ) via (5.2). On the other hand,

the W− solutions allow for a non-zero φ−(x). Since ∆± are the two roots of the equation

m2l2 = ∆(∆ − d), the requirement that W (φ) and hence ∆± are real imposes the well

known BF bound m2l2 ≥ −(d/2)2 [22, 27]. Further classification of the possible solutions

of equation (6.3) is facilitated by the following lemma.

Lemma 1. Provided the BF bound holds and ∆− > 0, any W− solution of equation (6.3)

lies on a continuous family of W− solutions while any W+ solution is isolated, or corresponds

to an end point of an one-parameter family of W− solutions, at an infinite distance in

parameter space from any given W− solution.

To prove this lemma, we will assume that the original solution W (φ) lies on a one-

parameter family of solutions. In the case of W+ solutions we will show that this always

leads to a contradiction, while for W− solutions we construct explicitly the one-parameter

family of solutions in the neighborhood of W (φ) when ∆− > 0. Suppose then that the

solution W (φ) lies on a continuous family of solutions parameterized by the integration

constant ξ, chosen such that ξ = 0 corresponds to W (φ). The one-parameter family of

solutions around W (φ) then takes the form

W (φ; ξ) = W (φ) + ξW (1)(φ) + O(ξ2), (6.7)

where

W (1)(φ) = exp

(
dκ2

d − 1

∫ φ

dφ̃
W (φ̃)

W ′(φ̃)

)
. (6.8)
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Let us now assume that the original solution W (φ) is of W+ type. Using the asymp-

totic form of W+ solutions for the various masses given in table 5, we can deduce the

corresponding asymptotic behavior of W (1)(φ). One finds,

W (1)(φ) ∼
{

φd/∆+ , −(d/2)2 < m2l2 < 0,

φ2, m2l2 = −(d/2)2.
(6.9)

Since 1 < d/∆+ < 2 when −(d/2)2 < m2l2 < 0, we see that in all cases, if one starts with

a W+ solution, the deformed solution W (φ; ξ) has asymptotics which are not compatible

with the asymptotics in table 5, which any solution must obey. We have therefore reached

a contradiction and we conclude that any W+ type solution is isolated. On the other hand,

if the original solution is of W− type, then the deformation (6.8) behaves asymptotically

as

W (1)(φ) ∼
{

φd/∆− , −(d/2)2 < m2l2 < 0,
φ2

(log φ)2
, m2l2 = −(d/2)2.

(6.10)

If ∆− > 0, the BF bound ensures that d/∆− > 2 and so we see that in this case the

asymptotic form of the deformation W (1)(φ) is subleading relative to the asymptotic be-

havior of the original solution. Hence, the deformed solution does exist, at least in the

neighborhood of the original solution, and it is of W− type for any (finite) value of the

deformation parameter.18 This completes the proof of the above lemma.

¤

The last claim in the the proof of the above lemma, namely that, when the deformation

exists, the deformed solution (6.7) remains of W− type to all orders in the deformation

parameter ξ, follows from the next lemma.

Lemma 2. The deformation parameter ξ can be chosen such that all higher-than-first

order in ξ terms are also asymptotically subleading relative to W (1)(φ), i.e. such that

W (n)(φ) = o
(
W (1)(φ)

)
as φ → 0 for all n > 1.

To prove this statement, we expand the deformed solution W (φ; ξ) as

W (φ; ξ) =

∞∑

n=0

ξnW (n)(φ), (6.11)

where W (0)(φ) ≡ W (φ) denotes the undeformed solution. Inserting this in (6.3) we deter-

mine that W (1)(φ) is given by (6.8) while for n > 1

W (n)(φ) = W (1)(φ)

∫ φ

dφ̃
Q(n)

W (0)′W (1)
, (6.12)

where

Q(n) ≡ −1

2

n−1∑

m=1

(
W (m)′W (n−m)′ − dκ2

d − 1
W (m)W (n−m)

)
. (6.13)

18Lemma 2 below guarantees that the asymptotics is not affected by the higher order in ξ terms either.

– 25 –



J
H
E
P
0
5
(
2
0
0
7
)
0
7
5

Using the asymptotics for the W− type solutions given in table 5, we can show that there

exists a unique value of the integration constant implicit in (6.12), such that W (2)(φ) =

o
(
W (1)(φ)

)
as φ → 0. Since the integration constant in (6.12) simply multiplies the

homogeneous solution W (1), it follows that any other value of the integration constant can

be absorbed in the definition of the deformation parameter ξ. A simple inductive argument

can now be used to complete the proof for any order n > 1.

¤

Note that in order to determine whether a given W+ solution is the end point of an one-

parameter family of W− solutions we need to treat the deformation non-perturbatively,

which is to say, we must be able to solve (6.3) exactly. We will consider a case for which

this is possible in the next section, where we will show that indeed the W+ solution is the

end point of an one-parameter family of W− solutions.

The final ingredient we need to evaluate the renormalized on-shell action for both W+

and W− type solutions is the asymptotic form of the functions Z(φ) and M(φ), given in

table 6, which follows from that of the fake superpotential in table 5 via equations (6.4)

and (6.5). With this last piece of information then we now only need to insert the functions

W (φ), Z(φ) and M(φ) in the regularized action (5.1) and identify the piece of zero dilata-

tion weight. This is straightforward and results in the renormalized actions given in table 7,

but a couple of subtle, yet important, points are worth mentioning. Firstly, there is the

freedom of adding extra finite local counterterms to Sct, which we mentioned in section 3.

In this case it is manifested by the arbitrariness of the parameter ξ in the effective actions

obtained from W− solutions. Different W− solutions lead to a different value for this pa-

rameter and so a definite choice of counterterms amounts to setting this parameter to zero

for a particular W− solution. Once this choice is made, however, all other W− solutions

will necessarily have a non-zero ξ. It is clear then that for Mixed boundary conditions the

freedom of adding finite local counterterms simply corresponds to the choice of what one

defines to be the ‘undeformed’ theory - and not to a renormalization scheme dependence

as is the case for Dirichlet boundary conditions. In writing the effective actions in table 7

we have picked a random W− solution and we have assigned it the value ξ = 0. We will see

later that if the system (6.1) is embedded in some gauged supergravity, a natural choice for

the solution that defines the zero of the parameter ξ is the true superpotential of the theory,

provided, of course, it is a W− type solution of (6.3). A second minor point to note is that

for d = 2 the leading term of Z(φ) gives both a divergent term, which is removed by the

counterterms, as well as the finite piece that contributes to the renormalized action. This

is clear if one splits the logarithm as log φ ∼ log e−∆±r/l + log φ±(x). The first piece then

gives the usual logarithmically divergent term associated with the conformal anomaly [44],

while the second piece gives the finite contribution to the renormalized action. Note also

that we have added an arbitrary function f(φ−) in the effective actions arising from W−
solutions, which corresponds to a general multi-trace deformation. Although the above

argument does not account for these terms, we have already seen that they arise from a

choice of boundary conditions and we will discuss how they can be accommodated in the

the Hamilton-Jacobi setting below. Finally, except from the parameter ξ that appears only
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m2l2 Z(φ) M(φ)

d > 2 −(d/2)2 < m2l2 Z±(φ) ∼ − l
2κ2(d−2)

+ c±φ
d−2
∆± M±(φ) ∼ c±

2(d−1)(d−2)

∆2
±

φ
d−2
∆±

−2

−(d/2)2 Z+(φ) ∼ − l
2κ2(d−2)

+ c+φ
2(d−2)

d M+(φ) ∼ c+
8(d−1)(d−2)

d2 φ− 4
d

Z−(φ) ∼ − l
2κ2(d−2)

+ c−
“

φ
log φ

” 2(d−2)
d

M−(φ) ∼ c−
8(d−1)(d−2)

d2
1

φ2

“
φ

log φ

” 2(d−2)
d

d = 2 m2 < 0 Z±(φ) ∼ l
2κ2∆±

log φ + c± M±(φ) ∼ l
κ2∆2

±

1
φ2

Table 6: The asymptotic behavior of the functions Z(φ) and M(φ) following from that of the

fake superpotential, W (φ), in table 7.35 via equations (6.4) and (6.5). c± are arbitrary constants

corresponding to the integration constant of equation (6.4).

d W Γ[σ]

> 2 + c+

R
∂M ddx

√
g(0)

 
φ

d−2
∆+
+ R[g(0)] +

(d−1)(d−2)

∆2
+

φ
d−2
∆+

−2

+ g(0)
ij∂iφ+∂jφ+

!

−
R

∂M ddx
√

g(0)

 
ξφ

d
∆−

− + f(φ−) + c−φ
d−2
∆−

− R[g(0)] + c−
(d−1)(d−2)

∆2
−

φ
d−2
∆−

−2

− g(0)
ij∂iφ−∂jφ−

!

2 + l
2κ2∆+

R
∂M ddx

√
g(0)

“
log φ+R[g(0)] +

2
∆+

φ−2
+ g(0)

ij∂iφ+∂jφ+

”
+ c+χ

−
R

∂M d2x
√

g(0)

„
ξφ

2
∆−

− + f(φ−) + l
2κ2∆−

“
log φ−R[g(0)] +

2
∆−

φ−2
− g(0)

ij∂iφ−∂jφ−
”«

+ c−χ

Table 7: The renormalized effective actions corresponding to the W+ and W− solutions in the

two-derivative approximation. c± are undetermined constants that depend on the dynamics, while

χ is the Euler number of the two-dimensional boundary. Note that the d = 2 effective actions are

related to the Liouville action by the field redefinition ϕ = log φ
1/∆−

− . Interestingly, the parameter

ξ corresponds to the 2D cosmological constant.

in the W− effective actions, and which as we just saw corresponds to a choice of boundary

conditions, the effective actions in table 7 also depend on the undetermined parameters c±.

These parameters multiply a conformally invariant combination of the two two-derivative

terms (for d > 2), and can be determined as we will see by computing the effective potential

on a curved boundary, which fixes the coefficient of the curvature term.

The above analysis provides a complete rederivation of the constraints on the scalar

mass in order for Dirichlet, Neumann or Mixed boundary to be admissible [22, 34, 35].

However, from a very different perspective. Here the constraints arise as essential con-

ditions for the existence of the corresponding effective action for the dual operator. As

we have seen, the existence of this effective action requires first of all the existence of a

real function W (φ), which leads to the BF bound. As expected then, the W+ solutions,

corresponding to Dirichlet boundary conditions, lead to an effective action for the VEV
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π̂(∆+) = −1
l (∆+ − ∆−)φ+, for ∆+ > ∆−, or π̂(∆+) = −1

l φ+, for ∆+ = ∆− = d/2, of an

operator of dimension ∆+. W− solutions on the other hand, which correspond to Neumann

or Mixed boundary conditions, lead to an effective action for the VEV φ− of an operator of

dimension ∆−. It should now be clear why W+ solutions are isolated while W− solutions

lie on a one-parameter family of W− solutions. Namely, we have seen in section 3 that

Dirichlet boundary conditions cannot be continuously deformed, but Neumann and Mixed

boundary conditions can. In particular, the parameter ξ that defines this one-parameter

family of W− solutions is identified with the parameter of a marginal multi-trace deforma-

tion. Moreover, we have argued above that these actions should only be valid away from

the vanishing VEV point. Indeed, if the kinetic term in the actions in table 7 could be

continued close to zero VEV, this would mean that the two-point function of the scalar

operator is dominated by the Goldstone pole in the UV (as well as in the IR), but this

of course violates the conformal invariance of the theory which should be restored in the

UV. By looking at table 7 we see that the condition for the effective actions to break down

for vanishing VEV is precisely the unitarity bound ∆± > (d − 2)/2. Since ∆+ ≥ d/2 by

definition, this is only a constraint on ∆−, which is equivalent to the condition that the

mass lies in the range (3.13). We conclude that Neumann and Mixed boundary conditions,

which require the existence of a W− solution, are only possible for masses in this range.19

6.2 Minisuperspace approximation

In order to see how a general multi-trace deformation can be accommodated in the

Hamilton-Jacobi language, and possibly to determine the parameters c± in the two-

derivative effective actions in table 7 by computing the effective potential on a non-flat

boundary, we now proceed by considering the ‘minisuperspace’ approximation for solu-

tions of the form (5.3). From table 10 we see that with this ansatz the canonical momenta

reduce to πA = −d(d − 1)edAȦ/κ2, πφ = edAφ̇, while the Hamiltonian (A.9) becomes

H =
1

2

[(
π2

φ − κ2

d(d − 1)
π2

A

)
e−dA −

(
−d(d − 1)k

κ2l2
e−2A + 2V (φ)

)
edA

]
. (6.14)

The Hamilton-Jacobi problem then reduces to a standard classical mechanics problem,

where we look for a complete integral, S(A,φ), such that

πA =
∂S
∂A

, πφ =
∂S
∂φ

, (6.15)

and H = 0. For k = 0, i.e. for a flat boundary, a solution to this Hamilton-Jacobi equation

is

S(A,φ) = edAW (φ), (6.16)

where W (φ) satisfies equation (6.3). The two equations (6.15) for the momenta then

become respectively

Ȧ = − κ2

d − 1
W (φ), φ̇ = W ′(φ). (6.17)

19Note that this is in complete agreement with the analysis of [21], which shows that a W−(φ) solution

is necessary in order for stability with Mixed boundary conditions to be possible. But from our perspective

in terms of the dual field theory, the quantity W (φ) (called P (φ) in [21]) is physical and not merely ‘an

auxiliary construct’ - it determines the effective action of the dual operator.
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In combination with equation (6.3) for the function W (φ), we recognize these equations as

the flow or ‘BPS’ equations for Poincaré domain walls (see e.g. [45, 46]). If the action (6.1)

is embedded into a particular gauged supergravity, then generically there is a unique solu-

tion, Wo(φ), of (6.3) that coincides with the true superpotential of the theory. In that case

the flow equations (6.17) do coincide with the true BPS equations of the theory. However,

any other solution W (φ) gives a non-supersymmetric solution of the supergravity equa-

tions [47, 23]. Following [48], we call W (φ) the ‘fake superpotential’, although ‘Hamilton’s

characteristic function’ would be a more appropriate name in the present context. Indeed,

none of the above depends on supersymmetry in any way. The first order formalism, also

known as ‘fake supergravity’ [48], for Poincaré domain walls is simply Hamilton-Jacobi

theory for the bulk equations of motion [29]. An analysis of curved domain walls, k 6= 0, in

the context of Hamilton-Jacobi theory has appeared recently in [49]. Since the Hamilton-

Jacobi equation arising from the Hamiltonian (6.14) for k 6= 0 is non-separable, it is not

easy to find a complete integral for an arbitrary potential in this case. Here we will therefore

focus on the k = 0 case, but we will later show that for a conformally coupled scalar such

a complete integral can be found even for k 6= 0, which will allow us to fix the constants

c±.

Recall that a complete integral of the Hamilton-Jacobi equation following from the

Hamiltonian (6.14) involves an arbitrary constant. In particular, the solution (6.16) is a

complete integral provided W (φ) is the general solution of (6.3), depending on an arbitrary

parameter. This parameter, of course, is the coupling, ξ, of the marginal multi-trace defor-

mation. Since any complete integral leads to the most general solution of the form (5.3),

we can obtain the most general flat domain wall solution provided we can solve equa-

tion (6.3) exactly for the one-parameter family of fake superpotentials. Indeed, we will

show below that this is possible, at least for certain potentials. However, the complete

integral obtained form (6.16) via the one-parameter family of fake superpotentials is not

the most general complete integral. To see this, suppose Wo(φ) is a solution of (6.3) such

that (6.16) is a solution (not a complete integral) of the Hamilton-Jacobi equation. We can

now look at the most general infinitesimal deformation, δS, of this solution by linearizing

the Hamilton-Jacobi equation around the solution S = edAWo(φ). This gives

W ′
o(φ)

∂δS
∂φ

− κ2

d − 1
Wo(φ)

∂δS
∂A

= 0, (6.18)

whose general solution is

δS = f

(
eAe

“

κ2

d−1

R φ dφ̄ Wo
W ′

o

”)
, (6.19)

for an arbitrary function f . But note that asymptotically eAe

“

κ2

d−1

R φ dφ̄ Wo
W ′

o

”

∼ φ
1/∆±
± ,

depending on whether Wo is a W+ or W− solution. It follows that δS contributes to the

renormalized action and corresponds to an arbitrary multi-trace deformation. However,

if this deformation were allowed for both W+ and W− solutions, it would contradict our

previous conclusion that multi-trace deformations are allowed only for Neumann or Mixed
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boundary conditions, and hence, only for W− solutions. Indeed, under the deformation δS,

δφ̇ ∼ 1

∆±
f ′

(
eAφ1/∆±

)
e−(d−1)Aφ(1−∆±)/∆± . (6.20)

In order for the asymptotic form of the scalar field, φ ∼ φ±(x)e−∆± , not to be changed by

the deformation, we must then require that d−1+1−∆± ≥ ∆±, or equivalently ∆± ≤ d/2.

But this picks out only ∆− since by definition ∆+ ≥ d/2. We therefore conclude that the

deformation (6.19) is allowed only if Wo is a W− solution.

The above discussion demonstrates that in the Hamilton-Jacobi formalism, any multi-

trace deformation corresponds to a choice of a complete integral of the Hamilton-Jacobi

equation. In particular, although a complete integral of the form (6.16) accounts only for

marginal multi-trace deformations, by allowing for a more general complete integral as

in (6.19) the Hamilton-Jacobi formalism can accommodate any multi-trace deformation.

This freedom in choosing a complete integral then gives rise to the arbitrary function f(φ−)

in the corresponding renormalized effective action.

6.3 The ‘2/3’ potential

We now consider a special scalar potential for which equation (6.3) for the fake super-

potential can be solved exactly. As we have seen, this gives a complete integral of the

Hamilton-Jacobi equation via (6.16), and hence the most general flat domain wall solution.

The potential we will consider is

V (φ) = −d(d − 1)

2κ2l2
cosh

(
2

3

√
dκ2

d − 1
φ

)
, (6.21)

which we propose to call the ‘2/3’ potential. This potential was introduced in [32], although

the special case d = 3 has appeared elsewhere in the literature as well. In particular, for

d = 3 this potential arises from a one-scalar consistent truncation of the N = 8 gauged

supergravity in D = d + 1 = 4 dimensions [50]. It was also considered in [51], where a

four-dimensional asymptotically locally AdS topological black hole with scalar hair was

found, as well as in [23] and [24], where respectively four-dimensional domain walls and

instantons were found and uplifted to M-theory.

The scalar mass for the potential (6.21) is m2l2 = −2(d/3)2 and hence the two con-

formal dimensions are ∆− = d/3, ∆+ = 2d/3. Requiring that the mass falls in the

range (3.13), for which Mixed boundary conditions can be considered, restricts the bound-

ary dimension to lie in the range 2 ≤ d ≤ 6. In [32] it was shown that equation (6.3) with

the potential (6.21) can be solved exactly. The general solution is (see also [23])

W (φ; ν) = −d − 1

κ2l

1

(1 − ρ2)
3
4

1 − ρ2 +
√

1 + 2νρ + ρ2

√
2(1 + νρ +

√
1 + 2νρ + ρ2)

, ν ≥ −1, (6.22)

where ρ = tanh

(
2
3

√
dκ2

d−1φ

)
and ν ≥ −1 is an arbitrary parameter. In the d = 3 case,

the value ν = −1 corresponds to the true superpotential of the truncated N = 8 gauged
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supergravity in four dimensions [23]. Expanding (6.22) one obtains

W (φ; ν) = −d − 1

κ2l

(
1 +

1

6
ψ2 +

1

27
νψ3 + O(ψ4)

)
, (6.23)

where ψ =
√

dκ2

d−1φ. For any finite ν ≥ −1 then (6.22) is a W− type solution and the

parameter ν is related to the deformation parameter ξ in (6.7). In particular, choosing

ξ such that ξ = 0 corresponds to the supersymmetric solution with ν = −1 gives ξ =

− d−1
27κ2l

(
dκ2

d−1

) 3
2
(ν + 1).

The flow equations (6.17) can now be used to construct the corresponding Poincaré

domain wall solution, which takes the form

ds2 =

(
3l

d

)2

(
1 + νρ +

√
1 + 2νρ + ρ2

)

2ρ2
√

1 − ρ2(1 + 2νρ + ρ2)
dρ2

+c2

(√
1 − ρ2

2ρ2

(
1 + νρ +

√
1 + 2νρ + ρ2

))3/d

dxidxi,

φ =
3

2

√
d − 1

dκ2
tanh−1 ρ, (6.24)

where, for finite ν, the parameter c is related to the VEV, φ−, via

c =

(
2

3

√
dκ2

d − 1
φ−

)3/d

. (6.25)

For the special case d = 3, where this domain wall is a solution of N = 8 gauged super-

gravity, the value ν = −1 gives a supersymmetric domain wall since for this value (6.22)

coincides with the true superpotential. For ν > −1 (6.24) is a non-supersymmetric solution

of the equations of motion.

We have seen that every solution of the bulk equations of motion is dual to an ex-

tremum, or ‘vacuum’, of the effective action of the dual boundary theory. In particu-

lar, Poincaré domain walls correspond to homogeneous vacua, where the VEV φ− is a

constant extremizing the effective potential Veff(φ−). From our general prescription for

computing the effective action in section 3, we see that in order to evaluate the effec-

tive potential we should first evaluate the renormalized momentum as a functional of the

VEV by solving the radial problem. We have already done this in this case and we have

found π̂(∆+) = dξφ
∆+/∆−
− /∆− = 3ξφ2

−. However, this depends on the arbitrary parameter

ξ, which should in principle be fixed by requiring regularity of the corresponding solu-

tion (6.24). But since this solution is singular for any value of ξ,20 we exceptionally do not

impose this condition and we will take ξ ≤ 0 to be arbitrary. The effective potential then

takes the form

Veff(φ−) = ξφ3
− + f(φ−), (6.26)

20Note, however that while for ν = −1 (6.24) has a null singularity, for ν > −1 the singularity is

timelike [23]. If this is taken as a criterion for ‘regularity’, then the supersymmetric solution is the only

‘regular’ solution.
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where ξ is related to ν by the relation we gave above. An extremum of this effective

potential then corresponds to imposing the relation

3ξφ2
− + f ′(φ−) = 0, (6.27)

between the parameters ν and φ−. The domain wall (6.24) with this relation imposed

is then dual to the vacuum of the boundary theory corresponding to the VEV given

by (6.27). We should emphasize here that given a solution of (6.27), the correspond-

ing domain wall (6.24) takes the same form for all choices of boundary condition f(φ−),

although the relation between ν and φ− is different for different boundary conditions.

An interesting example is the case where the domain walls (6.24) are solutions of N = 8

gauged supergravity in four dimensions. In that case, the ν = −1 (ξ = 0) domain wall is

supersymmetric and describes the Coulomb branch of the dual theory. The corresponding

effective potential is therefore flat, i.e. f(φ−) ≡ 0, since the VEV is totally arbitrary. If

the coupling ξ of the marginal multi-trace deformation is then turned on, the effective

potential, Veff(φ−) = ξφ3
−, destabilizes the theory since ξ < 0.21 To have a non-trivial

solution when ν > −1 then, we need to introduce another ξ-dependent deformation, on

top of the marginal one. In particular, we can choose f(φ−) = −ξh(φ−) such that the

effective potential is

Veff(φ−) = ξ(φ3
− − h(φ−)), (6.28)

for some function h(φ−) > 0. Even though for ξ = 0 the VEV is totally undetermined,

when ξ is turned on the VEV is fixed to some non-zero value determined by V ′
eff(φ−) = 0.

This is precisely the situation discussed in [23], where the specific choice h(φ−) = J∗φ−,

corresponding to a single-trace deformation, was made. While at the supersymmetric

point describing the Coulomb branch the VEV is arbitrary, away from the supersymmetric

point the VEV is a function of the arbitrary background source, J∗, of the single-trace

deformation.

Finally, let us consider the limit ν → ∞, corresponding to the limit where the coupling,

ξ, of the marginal deformation of the original CFT is sent to (negative) infinity. In this

limit the fake superpotential (6.22) becomes

W (φ;∞) = −d − 1

κ2l

1

(1 − ρ2)
3
4

. (6.29)

Expanding this we get

W (φ;∞) = −d − 1

κ2l

(
1 +

1

3
ψ2 + O(ψ4)

)
, (6.30)

and so this is a W+ solution. The one-parameter family of fake superpotentials (6.22) then

provides an explicit example of the general picture we discussed in the previous section.

Namely, for all finite values of ν, (6.22) is a W− solution, while the W+ solution arises as

21If ξ were positive, the effective potential would force the VEV to vanish. In that case the domain

wall (6.24) reduces to exact AdS. A non-trivial solution for ν > −1 then would require the addition of some

other term proportional to ξ in the effective potential, much like in the case ξ < 0.
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an endpoint of this one-parameter family at ν → ∞. Letting c2ν
3
d = c̄2, the domain wall

solution corresponding to ν → ∞ is

ds2 =

(
3l

d

)2 dρ2

4ρ2
√

1 − ρ2
+ c̄2

(√
1 − ρ2

2ρ

)3/d

dxidxi,

φ =
3

2

√
d − 1

dκ2
tanh−1 ρ, (6.31)

where now

c̄ =

(
4

3

√
dκ2

d − 1
φ+

)3/2d

. (6.32)

For an infinite value of the marginal deformation parameter then the dimension of the

operator dual to the scalar field changes from ∆− to ∆+. The domain wall (6.31) describes

the arbitrary VEV of this dimension ∆+ operator.

7. Conformal coupling

As a second example of a system where the method outlined in section 5 can be applied,

we consider the minimally coupled scalar field in (6.1) with the strange-looking potential

V (φ) = −d(d − 1)

2κ2l2

(
cosh

(√
(d − 1)κ2

4d
φ

))2(d+1)
(d−1)

+
λ

2

(
4d

(d − 1)κ2

) (d+1)
(d−1)

(
sinh

(√
(d − 1)κ2

4d
φ

)) 2(d+1)
(d−1)

(7.1)

where λ is an arbitrary dimensionless coupling constant, which we will assume it is positive.

Although this potential looks rather complicated and unintuitive, it is in fact a very special

potential. First, note that the scalar mass corresponding to the potential (7.1) is the

conformal mass m2l2 = −(d/2)2 + 1/4, leading to the two conformal dimensions ∆± =

(d ± 1)/2. Scalars with this mass in AdS are ‘massless’ in the sense that their Lorentzian

bulk-to-bulk propagator has support only on the light cone d(x, x′) = 0, where d(x, x′) is

the geodesic distance between two points x and x′ in AdS [22]. Moreover, the conformal

mass falls within the mass range (3.13) which allows for Mixed boundary conditions.

However, the conformal mass is not the only special property of the potential (7.1).

Another special property of the potential (7.1) is that for d = 3 and λ = κ2/6l2 it coincides

with the potential (6.21), which, as we pointed out, precisely for d = 3 can be embedded

into N = 8 gauged supergravity in four dimensions. The most significant property though

of (7.1) is that the field redefinition

√
(d − 1)/dκφ̃/2 = tanh

(√
(d − 1)/dκφ/2

)
,

g̃µν =
(
cosh

(√
(d − 1)/dκφ/2

)) 4
(d−1)

gµν , (7.2)
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transforms the action (6.1) with the potential (7.1) into the form22

S =

∫

M
dd+1x

√
g

(
− 1

2κ2

(
R+

d(d−1)

l2

)
+

1

2
gµν∂µφ∂νφ+

d − 1

8d
Rφ2+

λ

2
φ

2(d+1)
(d−1)

)
, (7.3)

which is the action for a self-interacting scalar conformally coupled to AdSd+1 gravity. This

transformation was given for the cases d = 2 and d = 3 in [11] and [51] respectively. This

last property allows us to circumvent the problem of analyzing the action (6.1) with the

complicated potential (7.1), by studying instead the equivalent but simpler action (7.3).

Note, however, that the transformation (7.2) implies that the conformally coupled scalar

can be transformed into a minimally coupled scalar provided it is bounded. Since the

action (7.3) does not necessarily imply that the scalar field is bounded, only certain bounded

solutions of (7.3) correspond to solutions of (6.1).

The equations of motion following from the action (7.3) can be written in the form

Rµν +
d

l2
gµν = κ2Tµν , ¤gφ − d − 1

4d
Rφ − d + 1

d − 1
λφ(d+3)/(d−1) = 0, (7.4)

where the modified stress tensor Tµν is given by

Tµν =
(d − 1)2

4d

φ2d/(d−1)

(
1 − (d−1)κ2

4d φ2
)

(
∇µ∇ν − 1

d + 1
gµν¤g

)
φ−2/(d−1). (7.5)

These equations are in fact not independent. Since Tµν is manifestly traceless, the first

equation in (7.4) implies that the Ricci scalar is constant

R = −d(d + 1)

l2
. (7.6)

The contracted Bianchi identity then implies that Tµν is divergenceless. This fact imposes

a differential constraint on the scalar φ which is precisely the second equation in (7.4),

except that the dimensionless coupling appears as an integration constant and so is not

determined by the divergencelessness of Tµν . Hence, the first equation in (7.4) implies the

second up to the value of the dimensionless coupling.

The very special form of these equations of motion makes it much easier to study the

action (7.3) instead of the minimally coupled scalar described by the action (6.1) with the

potential (6.21)- or any other potential, in fact. However, the conformal coupling in the

action (7.3) requires that we revisit not only the variational problem, but also the derivation

of the holographic effective action. In appendix A we consider the variational problem for

both the actions (6.1) and (7.3) in detail, and in each case we derive the correct form of

the Gibbons-Hawking term, as well as the radial canonical momenta, both of which are

listed in table 10. Using these results we can now turn to the computation of the effective

action for the operator dual to the scalar field described by the action (7.3).

22Note that we have dropped the tildes from the action (7.3) to simplify the formulas that follow. It

should be clear from the context when φ denotes the minimally coupled scalar in (6.1) or the conformally

coupled scalar in (7.3).
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7.1 Two-derivative effective action for conformal boundary conditions

To compute the renormalized effective action in the two-derivative approximation we pro-

ceed as in the case of minimal coupling. Namely, one inserts the ansatz (5.1) for the

regularized action into the momentum and Hamiltonian constraints (A.8). The momen-

tum constraint is independent of the particular form of the canonical momenta and, as

in the case of minimal coupling, it is automatically satisfied since it simply reflects the

invariance of (5.1) with respect to Σr diffeomorphisms. Since the Hamiltonian (A.10) is

now different, however, the Hamiltonian constraint leads to the equations

W ′2 − κ2

d(d − 1)

(
dW − d − 1

2
φW ′

)2

= −d(d − 1)

κ2l2
+ λφ

2(d+1)
d−1 , (7.7)

[
W ′ +

κ2

2d
φ

(
dW − d − 1

2
φW ′

)]
Z ′ − κ2

d

(
d − 2

d − 1

)
× (7.8)

×
(

dW − d − 1

2
φW ′

)
Z +

1

2κ2

(
1 − (d − 1)κ2

4d
φ2

)
= 0,

M =
2κ2

d

(
dW − d−1

2 φW ′) Z ′ + d−1
2d φ

W ′ + κ2

2dφ2
(
dW − d−1

2 φW ′) , (7.9)

instead of equations (6.3), (6.4) and (6.5). The action is therefore determined once we solve

the non-linear equation (7.7), which is the analogue of (6.3) for minimal coupling.

The general solution of (7.7) in the vicinity of the exact solution corresponding to

ξ = 0 takes the form

W (φ; ξ) = −d − 1

κ2l
+


±d − 1

2d

√
λ + ξ

(
1 ∓ 2l

√
λ

d − 1
φ

2
d−1

)−d

φ

2d
d−1 + O(ξ2), (7.10)

where ξ is an arbitrary parameter analogous to the deformation parameter in (6.8). Note

that both sign possibilities here lead to solutions analogous to the W− solutions of equa-

tion (6.3) (i.e. φ− 6= 0). Perhaps the analogue of a W+ solution can be obtained in the

limit ξ → ∞, which could be evaluated if the solution (7.10) were known exactly as a

function of ξ, but we will not investigate this further. We will fix the sign in (7.10) below.

Using (7.10) we find that the leading asymptotic behavior of the functions Z(φ) and M(φ)

is exactly as given in table 6 for a W− solution with ∆− = (d − 1)/2. Evaluating then the

renormalized action we obtain

Γ[φ−] =





∫
∂M ddx

√
g(0)

(
Veff(φ−)+c−

(
φ

2(d−2)
(d−1)

− R[g(0)]+
4(d−2)
(d−1) φ

− 2
(d−1)

− g(0)
ij∂iφ−∂jφ−

))
,

d > 2,

∫
∂M d2x

√
g(0)

(
Veff(φ−)+ l

κ2

(
log φ−R[g(0)]+4φ−2

− g(0)
ij∂iφ−∂jφ−

))
+c−χ,

d = 2,

(7.11)

which, as expected, are identical with the renormalized actions in table 7, except that the

effective potential is now given by

Veff(φ−) =

(
±d − 1

2d

√
λ + ξ

)
φ

2d
d−1
− + f(φ−). (7.12)
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7.2 Minisuperspace approximation

As for the minimally coupled scalar, the next step is to look at the ‘minisuperspace’ of

solutions of the form (5.3). The canonical momenta dual to the warp factor, A(r), and the

scalar field, which can be deduced from the momenta given in table 10, are respectively

πA = edA

(
−d(d − 1)

κ2

(
1 − (d − 1)κ2

4d
φ2

)
Ȧ +

d − 1

2
φφ̇

)
,

πφ = edA

(
φ̇ +

d − 1

2
Ȧφ

)
. (7.13)

Moreover, the Hamiltonian (A.10) becomes

H =
1

2

{
e−dA

(
π2

φ − κ2

d(d − 1)

(
πA − d − 1

2
φπφ

)2
)

(7.14)

+edA

(
d(d − 1)

κ2l2
− λφ

2(d+1)
(d−1) +

d(d − 1)k

κ2l2
e−2A

(
1 − (d − 1)κ2

4d
φ2

))}
.

Writing again

πA =
∂S
∂A

, πφ =
∂S
∂φ

, (7.15)

and inserting these into the equation H = 0 for the Hamiltonian (7.14) we obtain the

Hamilton-Jacobi equation for the conformally coupled scalar.

We could now look for a solution of the form (6.16), in which case the Hamilton-

Jacobi equation requires that the fake superpotential satisfies equation (7.7). Indeed, the

exact solution obtained from (7.10) by setting ξ = 0 does give a solution to the Hamilton-

Jacobi equation. However, since we do not know the full one-parameter family of fake

superpotentials that solve (7.7), the corresponding solution of the Hamilton-Jacobi equation

is not a complete integral, which is necessary in order to obtain the most general domain

wall solutions of the equations of motion. Nevertheless, in this case we can find a complete

integral of the Hamilton-Jacobi equation that is not of the form (6.16) and it is valid even

for curved boundary, k = ±1, as well as for flat boundary. It is easy to verify that writing

πA = −d(d − 1)

κ2l
edA

√
1 + ke−2A + µe−(d+1)A +

d − 1

2
φπφ,

πφ = ±edA

√
d(d − 1)

κ2l2
µe−(d+1)A + k

(
d − 1

2l

)2

φ2e−2A + λφ
2(d+1)
(d−1) , (7.16)

where µ is an arbitrary parameter, in the Hamiltonian (7.14) automatically gives H = 0. Of

course, this does not mean that we have found a solution to the Hamilton-Jacobi equation

unless
∂πA

∂φ
=

∂πφ

∂A
. (7.17)

Remarkably, this is indeed the case and hence there exists a complete integral S(A,φ) such

that the momenta (7.16) are obtained from it via (7.15). The fact that the momenta (7.16)
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are integrable, i.e. that they can be derived from a complete integral S(A,φ) via (7.15),

is one of our main results. As we will now show, this complete integral of the Hamilton-

Jacobi equation will allow us not only to completely determine the two-derivative effective

action on any boundary of locally constant scalar curvature, but also to obtain all possible

solutions of the form (5.3).

Effective action. Expanding the momenta (7.16) in eigenfunctions of the dilatation

operator and keeping the term of weight zero gives immediately the renormalized momenta

π̂(d)
i
j =

1

2
(1 + (−1)d)

(−1)
d
2 k

d
2 Γ(d + 1)

2d+1lκ2
(
Γ

(
d
2 + 1

))2 δi
j +

d − 1

4d
φ−π̂(∆+)δ

i
j ,

π̂(∆+) = ±
√

d(d − 1)

κ2l2
µ + k

(
d − 1

2l

)2

φ2
− + λφ

2(d+1)
(d−1)

− , (7.18)

where we have traded again the momentum πA for the physical momentum conjugate to

the induced metric γij . Note that the first term in π̂(d)
i
j, which only appears for even

boundary dimension, is nothing but the conformal anomaly [44], as can be seen from the

relation between the VEV of the stress tensor and the renormalized momentum π̂(d)
i
j given

in table 3.

The first thing that these renormalized momenta can tell us is the value of the undeter-

mined parameter c− in the effective action (7.11). Note that the parameter µ is determined

as a function of the VEV φ− by the requirement of regularity for the corresponding do-

main wall, which we will discuss below. As we will show, a possible value is µ = 0 - in fact

the only possible value for the physically relevant case where (7.3) is embedded in N = 8

gauged supergravity in four dimensions. Choosing µ = 0 then and expanding π̂(∆+) for

small curvature (large l), we obtain

π̂(∆+) = ±
√

λφ
d+1
d−1
−

(
1 +

k

2λ

(
d − 1

2l

)2

φ
− 4

d−1
− + · · ·

)
, (7.19)

where the dots stand for higher derivative terms. Comparing this with the derivative of

the effective action (7.11) with respect to the VEV, φ−, and using R[g(0)] = d(d − 1)/l2,

determines

c− = ± (d − 1)2

16d(d − 2)
√

λ
, d > 2,

√
λ = κ2/16l, d = 2. (7.20)

Note in particular that for d = 2 the coupling λ is itself fixed. In order to have a posi-

tive kinetic term in the effective action (7.11), we should choose the positive sign in the

renormalized momentum π̂(∆+) and hence in the momentum (7.16).

However, the renormalized momentum π̂(∆+) in (7.18) allows us to determine the exact

effective potential on any boundary of constant scalar curvature. Namely, integrating π̂(∆+)
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d Vk=1(φ−)

2 1
8l

“
φ2
−

q
1 + 4l2λφ4

− + 1

2l
√

λ
log
“
2l
√

λφ2
− +

q
1 + 4l2λφ4

−

””
+ f(φ−)

3 1
3l3λ

“`
1 + l2λφ2

−
´3/2 − 1

”
+ f(φ−)

4 3
8λ

`
3
2l

´3
„

φ
2/3
−

“
1
2

+ 4l2

9
λφ

4/3
−

”q
1 + 4l2

9
λφ

4/3
− − 1

4l
√

λ
log

„
2l
3

φ
2/3
− +

q
1 + 4l2

9
λφ

4/3
−

««
+ f(φ−)

Table 8: The exact effective potential (7.21) for k = 1 and d = 2, 3, 4. Note that for d = 2 the

coupling, λ, is given by (7.20).

with respect to φ− (for µ = 0 again) we obtain the exact effective potential

Vk(φ−) =
(d − 1)3k

8d(d − 2)l2
√

λ
φ

2(d−2)
(d−1)

− F

(
1 − d

2
,
1

2
; 2 − d

2
;−k

λ

(
d − 1

2l

)2

φ
− 4

(d−1)

−

)

+
(d − 1)

2d
φ−

√(
d − 1

2l

)2

kφ2
− + λφ

2(d+1)
(d−1)

− + Vo + f(φ−), (7.21)

where the overall constant

Vo = −Γ
(
2 − d

2

)
Γ

(
d−1
2

)

Γ
(

1
2

) (d − 1)d+1k
d
2

2d+1d(d − 2)ldλ
d−1
2

, (7.22)

is determined by the requirement that Vk(0) = 0. For k = 0 the effective potential (7.21)

reduces to

Vk=0(φ−) =
(d − 1)

2d

√
λφ

2d
(d−1)

− + f(φ−). (7.23)

For k = 1 and for d = 2, 3, 4 the potential (7.21) is explicitly shown in table 8.

Domain walls and (absence of) gravitational instantons. The solution (7.16) also

enables us to find all possible solutions of the form (5.3). Using the expressions (7.13) for

the canonical momenta in terms of the radial derivatives of the warp factor and of the

scalar field we find

dr =
ldA√

1 + ke−2A + µe−(d+1)A
, (7.24)

where µ is an arbitrary integration constant. Defining u ≡ e−A and ϕ ≡ u−(d−1)/2φ we can

then write down the most general domain wall (5.3) in the form

ds2 =
l2du2

u2 (1 + ku2 + µud+1)
+

1

u2
ds2

d.

(7.25)∫ ϕ

ϕo

dϕ̄√
d(d−1)
κ2l2 µ + k (d−1)2

4l2 ϕ̄2 + λϕ̄
2(d+1)
(d−1)

= ∓l

∫ u

0

dū√
1 + kū2 + µūd+1

.
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k ds2
d

0 ds2(Rd) = dxidxi z = u, zi = xi

1 ds2(Sd) = dθ2 + sin2 θds2(Sd−1) z = u√
1+u2+cos θ

, zi = sin θni
√

1+u2+cos θ
, nini = 1

-1 ds2(Hd) = dθ2 + sinh2 θds2(Sd−1) z = u√
1−u2+cosh θ

, zi = sinh θni
√

1−u2+cosh θ
, nini = 1

Table 9: The three slice metrics ds2
d corresponding respectively to k = 0,±1, and the coordinate

transformations that bring the metric (7.25) with µ = 0 into the upper half plane metric (7.28).

The slice metric ds2
d is either one of the three constant curvature metrics given in table 9 or

the metric on a quotient of these by a discrete subgroup of their isometry group. Moreover,

since we picked the plus sign in the renormalized momentum π̂(∆+) in (4.6) so that the

kinetic term in the effective action has a positive sign, we must pick the minus sign in (7.25).

Note that if either k or µ are negative, then the range of the radial coordinate is

bounded, 0 ≤ u ≤ u∗, for some upper bound u∗.23 For k and µ non-negative, however, u

is unbounded from above: 0 ≤ u < ∞. Since φ = u(d−1)/2ϕ, in this case regularity of the

solution (7.25) requires that ϕ → 0 as u → ∞.24 This gives the condition

∫ ∞

d−1

2l
√

λ
ϕ
−2/(d−1)
o

dv√
1 + kv2 + d(d−1)

κ2l2λ

(
2l
√

λ
d−1

)d+1
µvd+1

=

∫ ∞

0

dv√
1 + kv2 + µvd+1

. (7.26)

For µ = 0 this is trivially satisfied since both integrals diverge. It follows that µ = 0 leads

to regular solutions, which we will discuss shortly. For µ > 0, however, this constraint can

only be satisfied if

λ <

(
(d − 1)dκ2

2d+1dld−1

)2/(d−1)

. (7.27)

Provided this holds, the above constraint gives a relation between µ and the VEV φ−.

Note, however, that for d = 2 and d = 3 the condition on the coupling is respectively

λ < (κ2/16l)2 and λ < κ2/6l2. But recall that we have determined in (7.20) that for d = 2

we must necessarily have λ = (κ2/16l)2, while for d = 3, λ = κ2/6l2 is precisely the value

of the coupling such that the action (7.3) can be embedded in M-theory. It follows that

no regular solutions of the form (7.25) with both k and µ non-negative exist in these two

cases. This is particularly significant for the three-dimensional case that can be embedded

in M-theory. Note that (7.25) with k = 1 and µ > 0, were it a regular solution, it would

23In fact, for k = −1 and µ > 0 these solutions are very similar to the Janus solution [52].
24Note, however, that regularity of the solutions for the conformally coupled scalar (7.3) does not guar-

antee the regularity of the corresponding minimally coupled scalar since the transformation rules (7.2) may

break down. This should be checked case by case.
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be a gravitational instanton similar to the numerical solutions of [13]. As in that case,

by analytic continuations (7.25) would then give static spherically symmetric gravitational

solitons, as well as Big Bang/Crunch geometries, which would have a dual description in

the dual N = 8 strongly coupled SCFT in three dimensions. Our argument shows the

absence of such solitons in this theory. Of course, this refers to the particular truncation

of N = 8 gauged supergravity that gives the action (7.3), and which is different from the

one used in [13]. We will see in the next section, however, that (7.3) does admit regular

instanton solutions, but of a different type.

An interesting property of the general domain wall solution (7.25) is that for µ = 0

the metric is the metric of Euclidean AdSd+1 (i.e. of the hyperbolic space Hd+1), for all

possible values of k = 0,±1.25 Indeed, the coordinate transformations given in table 9 for

each of the cases k = 0,±1, transform the metric in (7.25) with µ = 0 to the upper half

plane metric of Hd+1

ds2 =
l2

z2
(dz2 + dzidzi), i = 1, . . . , d. (7.28)

Moreover, for µ = 0 the scalar field in (7.25) takes the form

φ = ϕou
d−1
2




√
1 + ku2 ± u

√

k +

(
2l
√

λϕ
2

d−1
o /(d − 1)

)2



−(d−1)/2

, (7.29)

where ϕo is an arbitrary constant corresponding to the VEV φ−. For k ≥ 0, ϕo ≥ 0 but for

k = −1, ϕo > ((d − 1)l/
√

2λ)(d−1)/2. Note also that with the sign choice we made above,

the plus sign should be chosen in this expression. We will revisit this special case of the

domain wall solutions (7.25) shortly.

Another special case of the general solution (7.25) deserves a comment. Namely, for

d = 3 and λ = κ2/6l2, in which case the two potentials (6.21) and (7.1) agree, the Poincaré

domain wall (6.24) that we found in the previous section matches precisely with the do-

main wall (7.25) for k = 0. In order to compare the two solutions we use the field re-

definitions (7.2) to rewrite the domain wall (6.24) in the frame where the scalar field is

conformally coupled. The transformed solution takes the form

ds2 =
1

4ρ2

(
1+νρ+

√
1+2νρ+ρ2

)(
1+

√
1−ρ2

) (
l2dρ2

(1−ρ2)(1+2νρ+ρ2)
+ρ2

odxidxi

)
,

φ =

√
6

κ

ρ

1 +
√

1 − ρ2
, (7.30)

where ρo = 2κ√
6
φ−. It is now straightforward to check that identifying

u−2 =
ρ2

o

4ρ2

(
1 + νρ +

√
1 + 2νρ + ρ2

)(
1 +

√
1 − ρ2

)
, (7.31)

the solution (7.30) reproduces the domain wall (7.25), provided we also identify µ = (ν2 −
1)ρ4

o/16. According to the above discussion then, only the supersymmetric domain wall,

25Of course, this is true provided there are no global identifications in the slice metric ds2
d.
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corresponding to ν = −1, is regular. However, even in this case, the corresponding solution

for the physically relevant minimally coupled scalar is not regular. As was discussed in [23],

the difference between the supersymmetric and non-supersymmetric domain walls is that

the former has a null singularity, while the later has a timelike singularity. In both cases

this singularity can be seen in the corresponding 11-dimensional solution as arising from a

collapsing S2 inside the asymptotically S7 transverse space.

7.3 Instantons

Finally, we consider a very special class of solutions of the equations of motion (7.4), which

for the case d = 3 were found in [24]. These are solutions that satisfy

Tµν = 0, Rµν +
d

l2
gµν = 0. (7.32)

In the case of a vanishing cosmological constant such solutions have been discussed in [53].

The vanishing of the modified stress tensor gives a linear equation for the scalar field,

namely (
∇µ∇ν − 1

d + 1
gµν¤g

)
φ−2/(d−1) = 0, (7.33)

which admits non-trivial solutions provided the metric is exact AdSd+1. The general so-

lution of this equation, subject to the constraint that it also satisfies the second equation

in (7.4), can be written in the upper half plane coordinates (7.28) as

φ2/(d−1) =
(d − 1)

l
√

|λ|

(
bz

−sgn(λ)b2 + (z + a)2 + (~z − ~z0)2

)
, (7.34)

where a, b, zi
0, i = 1, . . . , d, are arbitrary constants. A special case of this solution (for

λ < 0) was found in [54] as a solution of the scalar equation (7.4) in four dimensions and

ignoring the back-reaction on the geometry. It was later pointed out in [24] that for any

value of the coupling, λ, there is in fact no back-reaction and, together with the AdS4

metric, this is an exact solution of the full gravity-scalar system. The solution (7.34) is the

generalization of the exact solution of [24] to any dimension.

In order to understand the significance of the parameters in this solution we consider

its asymptotic expansion

φ ∼ e−
(d−1)r

2l φ−(~z) − lαe−
(d+1)r

2l φ
(d+1)
(d−1)

− (~z), (7.35)

where α ≡
√

|λ|a/b and the inhomogeneous VEV, φ−(~z), is given by

φ
2/(d−1)
− =

(d − 1)

l
√

|λ|

(
b

−sgn(λ)b2 + a2 + (~z − ~z0)2

)
. (7.36)

The asymptotic form (7.35) tells us that the two modes, φ±, of this soliton are related by

φ+ = −lαφ
(d+1)
(d−1)

− , or equivalently

π̂(∆+) = −1

l
(∆+ − ∆−)φ+ = αφ

d+1
2

− . (7.37)
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From table 2 we then unambiguously conclude that the solution (7.34) satisfies Mixed

boundary conditions: Jf− = −π̂(∆+) − f ′(φ−) = 0, with

f(φ−) = −α
(d − 1)

2d
φ

2d
(d−1)

− , (7.38)

which corresponds to a marginal multi-trace deformation with deformation parameter α.

It follows that the parameter α =
√

|λ|a/b is not a modulus of the solution (i.e. of the

VEV), but rather a modulus of the theory itself (of course this refers to the large N

limit only). Different values of α correspond to different points along the line of marginal

deformations (7.38). Equivalently, two solutions of the form (7.34) with different values of

α satisfy different boundary conditions. Note that regularity of the general solution (7.34)

requires that a > b ≥ 0 and hence α >
√

λ > 0. Using the exact effective potential (7.23)

with the boundary condition (7.38) we see that this is precisely the condition for the

effective potential to become unbounded from below.26 This suggests that the Euclidean

solutions (7.34) are instantons which mediate the decay of the conformal vacuum at φ− = 0

due to the instability introduced by the marginal deformation (7.38) [24].

A curious feature of the VEV (7.36) is that it is an extremum of a simple two-derivative

boundary action [24].27 This ‘phenomenological’ effective action in flat space takes the form

S = C
∫

ddz

(
φ
− 2

d−1
− ∂iφ−∂iφ− + (λ − α2)φ

2d
d−1
−

)
, (7.39)

where C is an arbitrary constant. Note, however, that this effective action does not - and

indeed it does not have to - agree with the holographic two-derivative effective action (7.11)

we have derived above. If one chooses C such that it matches the correct coefficient of the

kinetic term given in (7.11), then the coefficient of the potential term in (7.39) should be

changed as λ − α2 → 2
√

λ(
√

λ − α), if (7.39) were to agree with (7.11). Note that in the

vicinity of the critical point at α =
√

λ these coefficients do actually agree. However, we

see this as merely a curious coincidence, since the correct two-derivative effective action as

we showed is (7.11), and indeed the instanton VEV (7.36), which is an exact extremum

of the full all-derivative effective action, need not be an extremum of the two-derivative

effective action.

Moduli space. The moduli space of the instantons (7.34) is the space parameterized

by all arbitrary parameters of the solution, subject to the condition that the boundary

conditions remain fixed, i.e. provided α remains fixed. The moduli space becomes manifest

if we rewrite the instanton solution (7.34) in terms of the coordinates (Y−1, Y0, Yi), i =

1, . . . , d, of the covering space, R
1,d+1, of Hd+1. Namely, we introduce coordinates on

26Putting the theory on Sd does not change this conclusion, as can be deduced from the effective poten-

tial (7.21).
27See [55] for a recent discussion of the d = 2 case.
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R
1,d+1 as well as a set of auxiliary constants parameterizing an H̃d+1 as

Y−1 =
l

2z
(1 + z2 + ~z2), Ỹ−1 =

l̃

2z̃
(1 + z̃2 + ~̃z2),

Y0 =
l

2z
(1 − z2 − ~z2), Ỹ0 =

l̃

2z̃
(1 − z̃2 − ~̃z2),

Yi =
l

z
zi, Ỹi =

l̃

z̃
z̃i.

(7.40)

The solution (7.34) then can be written as

φ2/(d−1) =
1

−Ỹ · Y + 2
d−1 lα

, (7.41)

where Ỹ · Y ≡ −Ỹ−1Y−1 + Ỹ0Y0 +
∑d

i=1 ỸiYi, and we have identified

z̃ =
(d − 1)

2

bl̃√
|λ|

, z̃i = zi
o, l̃ =

2

d − 1

√
α2 − λ. (7.42)

The moduli space is therefore a hyperbolic space, H̃d+1, of radius l̃, which is well defined

precisely for α >
√

λ. Recall that this is exactly the condition for the instantons to exist,

as well as, for the effective potential to be unbounded from below. Finally, note that

the form (7.41) allows one to easily write the solution in any other coordinate system

parameterizing Hd+1.

Special limits. Since the metric (7.25) becomes exact AdSd+1 for µ = 0 and (7.34) is

the most general solution corresponding to an exact AdSd+1 metric, it follows that we

must be able to obtain the µ = 0 domain wall solutions discussed above as a limit of the

solution (7.34). This can indeed be easily seen, provided we realize that in taking any

limits of the general solution (7.34), we do not necessarily have to satisfy the the condition

a > b ≥ 0 that was essential for the regularity of the general solution. This is especially

so since the special limits can satisfy more general boundary conditions than the general

solution (7.34).

Setting first a = b in (7.34) and letting b → ∞ and ~z2
o → ∞, while keeping b/~z2

o =

l
√

λ
d−1ϕ

2
d−1
o constant, reproduces the solution (7.29) with k = 0. Moreover, setting zi

o = 0

and b = 2l
√

λ
d−1 ϕ

2
d−1
o in (7.34), the two choices a = ±

√
±1 + b2 lead via the coordinate

transformations given in table 9 to the solution (7.29) with k = ±1 respectively. It follows

that, although all three solutions satisfy boundary conditions corresponding to the marginal

deformation (7.38), only the solution for k = 1 satisfies the condition α >
√

λ, which is

necessary in order for the solution to be identified with an instanton. For k = 0 instead

we have α =
√

λ, while for k = −1, α <
√

λ. This can be seen directly by looking at the

extrema of the effective potential (7.21). Namely, the equation V ′
k(φ−) = 0 is nothing but

the gap equation Jf− = −π̂(∆+)−f ′(φ−) = 0, where now π̂(∆+) is given by (4.4) and f(φ−)

by (7.38). Rearranging this equation gives

k + (λ − α2)

(
2l

d − 1
ϕ

2
d−1
o

)2

= 0. (7.43)
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Φ-

Vk

Figure 1: Plot of the effective potential (7.21), with f(φ−) given by (7.38), on S3 for α <
√

λ

(long dashes), α =
√

λ (short dashes), and α >
√

λ.

Note that the VEV, φo, is undetermined for k = 0. In the special case where this solution

is embedded into N = 8 gauged supergravity in four dimensions, this is precisely the

Coulomb branch solution corresponding to ν = −1 in (6.24). For k = 1 the VEV is fixed

to ϕ
2

d−1
o = 1/ll̃, which is a local maximum of the effective potential (7.21), as can be seen

from figure 1 for the case d = 3. This plot also shows that the effective potential on S3 is

stable, marginally stable and unstable according to whether α <
√

λ, α =
√

λ and α >
√

λ

respectively.

Vacuum decay rate. We have seen above that the existence of these instanton so-

lutions for α >
√

λ coincides with the critical point where the exact quantum effective

potential (7.21) becomes unbounded from below. This suggests that the dual field theory

becomes unstable and the conformal vacuum at φ− = 0 decays via quantum tunneling, me-

diated by these instantons, to something else [24]. The endpoint of this decay is unclear,

however, since classical supergravity breaks down before this endpoint is reached. In the

d = 3 case, where the system (7.3) can be embedded in N = 8 gauged supergravity and the

corresponding asymptotically AdS4 ×S7 solutions uplifted to 11-dimensional supergravity,

this breakdown of the supergravity description can be traced to an S2 inside the S7 col-

lapsing [24]. 1/N corrections must therefore be taken into account in order to understand

the endpoint of the decay. From the bulk point of view, the instantons signal an instability

of the AdS vacuum once the modified boundary condition (7.38), with α >
√

λ is imposed.

The instanton solutions allow us to compute the decay probability of the conformal

vacuum, which is given by [39]

P ∝ e−Γα[φ]
∣∣∣
instanton

, (7.44)

where Γα[φ]|instanton is the effective action of the boundary theory evaluated on the instan-

ton VEV (7.36). Although we do not know the general form of the effective action, this
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decay rate can be computed exactly in two different ways. First, the effective action on

the VEV (7.36) can be evaluated by computing the bulk on-shell action on the instanton

solution (7.34), taking into account the boundary term (7.38). This gives

Γα|instanton =
π

d+1
2 l̃−d

Γ(d+1
2 )

α

d


1 − d

(d + 1) α√
λ

(
α√
λ

+ 1
)F

(
d + 2

2
, 1; d + 2;

2
α√
λ

+ 1

)
 . (7.45)

The second way relies on boundary quantities only. The crucial observation is that since the

value of the on-shell action does not depend on the moduli of the instanton - indeed (7.45)

depends only on the coupling λ and the deformation parameter α - we can go to any point

in the instanton moduli space to evaluate the effective action. In particular, we saw that

there is a point in the moduli space where the instanton VEV (7.36) is constant, namely

φ
2

d−1
− = 1/ll̃. This corresponds to the µ = 0, k = 1 domain wall we discussed above.

But then the effective action reduces to the effective potential, which we have computed

in (7.21). Evaluating the effective potential on this constant VEV and multiplying by the

volume of Sd gives, after some manipulation using the identity

F

(
−d

2
,
1

2
; 1 − d

2
;−x

)
=

√
1 + x −

(
d − 1

d − 2

)
xF

(
1 − d

2
,
1

2
; 2 − d

2
;−x

)
, (7.46)

precisely (7.45).
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A. The variational problem and Hamilton-Jacobi equations

In this appendix we consider the variational problem for the actions (6.1) and (7.3) on the

regulating hypersurface Σr. Specifically, we determine the appropriate Gibbons-Hawking

term and the radial canonical momenta for each case. Moreover, we give the radial Hamil-

tonian densities, which, via the Hamiltonian and momentum constraints, determine the

corresponding Hamilton-Jacobi equations.

A generic variation of the bulk action produces a bulk term proportional to the equa-

tions of motion as well as a boundary term. Namely,

δS =

∫

M
dd+1x

√
g ((eoms) + ∇µvµ) , (A.1)

for some vector field vµ. This vector field is fundamental to the study of the variational

problem and the radial Hamiltonian formalism. For the actions (6.1) and (7.3) it is given

respectively by

vµ
min = − 1

κ2
gρ[µ∇σ]δgρσ + δφ∇µφ, (A.2)

vµ
conf = − 1

κ2

(
1 − (d − 1)κ2

4d
φ2

)
gρ[µ∇σ]δgρσ − d − 1

2d
φδgρσgρ[µ∇σ]φ + δφ∇µφ. (A.3)
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m
in

im
al πij = − 1

2κ2

√
γ(Kγij − Kij)

πφ =
√

γφ̇

SGH = − 1
κ2

∫
Σr

ddx
√

γK
co

n
fo

rm
al πij = − 1

2κ2

√
γ

(
1 − (d−1)κ2

4d φ2
)

(Kγij − Kij) + d−1
4d

√
γφφ̇γij

πφ =
√

γ
(
φ̇ + d−1

2d Kφ
)

SGH = − 1
κ2

∫
Σr

ddx
√

γ
(
1 − (d−1)κ2

4d φ2
)

K

Table 10: The canonical radial momenta and the Gibbons-Hawking terms for the actions (6.1)

and (7.3). Note that Kij = 1

2
γ̇ij is the extrinsic curvature of the hypersurface Σr.

We can evaluate explicitly the boundary term (A.1) on Σr using the gauge-fixed met-

ric (3.1). Generically it takes the form

Br ≡
∫

Σr

∗v = −δSGH +

∫

Σr

ddx(δγijπ
ij + δφπφ), (A.4)

but the precise form of the Gibbons-Hawking term, SGH , and of the radial canonical

momenta, πij and πφ, crucially depends on the form of the bulk action. In table 10 we give

explicitly the momenta and the Gibbons-Hawking terms for minimally and conformally

coupled scalars. Note that although the Gibbons-Hawking term for minimally coupled

scalars is identical to the standard Gibbons-Hawking term for pure gravity, this is no

longer true for conformally coupled scalars.

The radial momenta given in table 10 are, of course, the same quantities as those one

would obtain from the functional derivatives of the off-shell bulk Lagrangian with respect

to the radial derivative of the corresponding induced field, i.e.

πij =
δL

δγ̇ij
, πφ =

δL

δφ̇
. (A.5)

However, the boundary term (A.4) shows that they also correspond to the functional

derivatives of the the regularized on-shell action,

Ir ≡ (S + SGH)|on−shell, (A.6)

with respect to the induced fields on the hypersurface Σr. Namely,

πij =
δIr

δγij
, πφ =

δIr

δφ
. (A.7)

These relations, familiar from Hamilton-Jacobi theory, are the main reason why the radial

Hamiltonian formalism is the most direct approach for studying the supergravity limit of

the AdS/CFT correspondence. Indeed, in the simplest case of Dirichlet boundary condi-

tions, the AdS/CFT dictionary identifies the induced fields, e.g. γij and φ, with the sources
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of the dual operators and the regularized on-shell action with the generating functional of

regularized connected correlation functions. It follows that the canonical momenta given

by (A.7) correspond to the regularized one-point functions of the dual operators with arbi-

trary sources. This statement trivially carries over for renormalized correlation functions

once the covariant boundary counterterms are added to Ir. Moreover, as it is extensively

discussed in section 3, once the covariant boundary counterterms are added to Ir, one can

add further appropriate finite boundary terms in order to modify the boundary conditions.

The bulk equations of motion can be written in terms of the radial canonical momenta

using a ‘radial ADM formalism’. As is well known, the resulting equations are the stan-

dard first order Hamilton equations complemented with the Hamiltonian and momentum

constraints, which reflect the diffeomorphism invariance of the theory. For the actions (6.1)

and (7.3) the constraints take the form

H = 0, 2Diπ
i
j = πφ∂jφ, (A.8)

where the Hamiltonian density, H, is given respectively by

Hmin =
2κ2

√
γ

(
πijπij−

π2

d−1

)
+

1

2
√

γ
π2

φ−
√

γ

(
− 1

2κ2
R[γ]+

1

2
∂iφ∂iφ + V (φ)

)
, (A.9)

Hconf =
2κ2

√
γ

(
1− (d−1)κ2

4d
φ2

)−1 (
πijπij−

1

d
π2

)
− 2κ2

d(d−1)
√

γ

(
π− d − 1

4
φπφ

)2

+
1

2
√

γ
π2

φ−
√

γ

(
− 1

2κ2
R[γ]+

(d−1)2

2d(d−2)
φ

d
d−1 ∆γφ

d−2
d−1 − d(d − 1)

2κ2l2
+

λ

2
φ

2(d+1)
(d−1)

)
, (A.10)

and where

∆γ ≡ −¤γ +
(d − 2)

4(d − 1)
R[γ], (A.11)

is the scalar conformal Laplacian in d dimensions. Note that although the form of the

Hamiltonian and of the momenta is different for minimally and conformally coupled scalars,

the form of the constraints remains the same. Hamilton’s equations can then be written

in terms of the Hamiltonian H =
∫

ddxH as

γ̇ij = 2Kij =
δH

δπij
, φ̇ =

δH

δπφ
, (A.12)

π̇ij = − δH

δγij
, π̇φ = −δH

δφ
. (A.13)

The two equations in the first line are just the inverse of the expressions in table 10 for

the momenta in terms of the radial derivatives of the induced fields. The two equations in

the second line give the second order equations one would obtain from the components of

Einstein’s equation that are transverse to Σr. However, we will not need the explicit form

of these equations since we only use the Hamilton-Jacobi formalism in this paper. This

consists in inserting the canonical momenta as derivatives of the regularized on-shell action

(see (A.7)) in the Hamilton and momentum constraints (A.8). The resulting equations are

the Hamilton-Jacobi equations for the gravity-scalar system. Hamilton’s equations are then

automatically satisfied due to the identification (A.7).
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